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Abstract

Zheng has proposed a seller-optimal auction for (asymmetric) independent-private-

value environments where inter-bidder resale is possible. Zheng’s construction requires

novel conditions—Resale Monotonicity, Transitivity, and Invariance—on the bidders’

value distribution profile. The only known examples of distribution profiles satisfying

these conditions in environments with three or more bidders are uniform distributions.

Our characterization result shows that Zheng’s conditions, while being strong, are

satisfied by many non-uniform distribution profiles. A crucial step in our analysis is

to show that Invariance implies Resale Monotonicity and Transitivity.
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1 Introduction

Zheng (2002) makes an important contribution to the theory of mechanism design with lim-

ited commitment.1 Starting from the observation that “much of the auction design literature

makes the unrealistic assumption that winning bidders cannot attempt to resell the good to

losing bidders,” Zheng proposes an alternative auction design that takes into account the

inability of the initial seller to prohibit resale. He considers a sequential mechanism selection

game where each current owner of the good chooses her sales mechanism knowing that the

winner of today’s mechanism will herself choose a sales mechanism that is optimal given that

the next winner will choose an optimal sales mechanism, and so on.

Zheng (2002) establishes conditions on the profile of the distributions (c.d.f.s) of the bid-

ders’ values such that the sequential mechanism selection game has an equilibrium where

the initial seller obtains the same profit as when she can prohibit resale. Zheng’s conditions

have five parts: Hazard Rate (HR), Uniform Bias (UB), Resale Monotonicity (RM), Transi-

tivity (TR), and Invariance (IV). The first two are straightforward: HR essentially requires

smoothness of the bidders’ c.d.f.s, and that every c.d.f. has a weakly increasing hazard rate,

while UB requires that the bidders can be ranked according to their c.d.f.s’ supports and

hazard rates, where bidder 1 is the one who has the smallest support and the largest hazard

rate.

The novel conditions RM, TR, and IV are more difficult—the only known examples of

c.d.f. profiles satisfying these conditions in environments with three or more bidders are

uniform distributions (Zheng, 2002, Example 3). However, as Zheng (2002, pp. 2213–2216)

explains, the novel conditions are crucial for his construction. Hence, it is important to

understand more generally which c.d.f. profiles satisfy the conditions. A second motivation

for investigating the conditions is that related conditions can be expected to come up in

future work building on Zheng (2002). For example, Lebrun (2005) considers the design

of personalized entry fees in a second-price auction with resale. Under a condition similar

to RM, Lebrun constructs an equilibrium in mixed strategies that implements the same

1Other recent contributions include Bester-Strausz (2001), Skreta (forthcoming), Calzolari-Pavan (forth-

coming).
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allocation as Zheng.2

We provide a characterization of the set of c.d.f. profiles satisfying Zheng’s conditions.

It turns out that the conditions, while being strong, are satisfied by many non-uniform c.d.f.

profiles. Hence, Zheng’s result applies more generally than one may have thought before.

Technically, our crucial insight is that the conditions relate the bidders’ c.d.f.s at points

where the bidders tie with their virtual valuations. Hence, by reformulating the conditions

in terms of inverse virtual valuation functions, we obtain a more transparent form of the

conditions.

In environments with two bidders, RM is the crucial condition because TR and IV are

empty. RM is equivalent to a differential inequality in terms of inverse virtual valuation func-

tions (Proposition 1), from which all two-bidder c.d.f. profiles satisfying Zheng’s conditions

can be computed.

In environments with n ≥ 3 bidders, condition IV is equivalent to a set of differential

equations in terms of inverse virtual valuation functions, supplemented with a lower bound

requirement for derivatives (Proposition 2). We show that IV implies RM and TR (Proposi-

tions 3 and 4). Furthermore, for any c.d.f. of bidder n that has a weakly decreasing density,

and any profile of nested supports, there exists a unique profile of c.d.f.s for bidders 2 to

n−1 such that IV is satisfied, while bidder 1’s c.d.f. remains unrestricted; we provide explicit

formulae for the inverse virtual valuation functions of bidders 2 to n − 1 (Proposition 5).

Using these formulae, one can compute all profiles of c.d.f.s satisfying Zheng’s conditions.

In particular, if the highest possible valuation is the same for all bidders, then the c.d.f.s for

bidders 2 to n− 1 are affine transformations of bidder n’s c.d.f. (Corollary 1).

2 Results

We reiterate only those aspects of Zheng’s model that are needed to state his assumptions.

Consider an independent-private-value auction environment with n ≥ 2 bidders. The distri-

2Lebrun (2005) relaxes UB. As long as UB is satisfied, his condition (2005, Corollary 7) is essentially

equivalent to RM (cf. footnote 4). He also explains (2005, Appendix 9) that his condition is necessary

within a restricted class of allocation rules. Conditions TR and IV play no role because Lebrun’s analysis is

restricted to two bidders.
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bution (c.d.f.) for the valuation of bidder i = 1, . . . , n is denoted Fi with support Ti.

Assumption 1 (HR) of Zheng consists of standard elements and needs no further discus-

sion.

Assumption 1 (Hazard Rate) For each player i, the support Ti of Fi is convex and

bounded from below. If Ti is a non-degenerate interval, the density function fi is positive

and continuous on Ti and differentiable in its interior, and (1 − Fi(ti))/fi(ti) is a weakly

decreasing function of ti on Ti.

We add the assumptions that for all i, the support Ti is non-degenerate and bounded,

the derivative f ′i exists at the boundary of Ti, and f ′i is continuous on Ti. Let ti = min Ti and

ti = max Ti. Define the hazard rate λi(ti) = fi(ti)/(1− Fi(ti)) for all ti such that Fi(ti) < 1.

The virtual valuation functions Vi (i = 1, . . . , n) are defined by Vi(ti) = ti − (1 −
Fi(ti))/fi(ti) (ti ∈ Ti). Given the above assumptions, the derivative V ′

i exists and is contin-

uous and ≥ 1. Moreover,

Vi(Ti) = [Vi(ti), ti] (i = 1, . . . , n). (1)

The inverse virtual valuation function V −1
i is well-defined on Vi(Ti). The derivative (V −1

i )′

is continuous and

∀vi ∈ Vi(Ti) : (V −1
i )′(v) ∈ (0, 1]. (2)

A straightforward computation shows that

fi weakly decreasing ⇔ (V −1
i )′ ≥ 1/2. (3)

Because (see, e.g., Krishna (2002, p. 255)) fi(t) = λi(t) exp(− ∫ t
ti

λi(t
′)dt′) and λi(t) =

1/(t− Vi(t)) for all t ∈ [ti, ti),

fi(V
−1
i (v)) =

1

V −1
i (v)− v

e
−

∫ V−1
i

(v)

ti

1
t′−Vi(t

′)dt′
(v ∈ [Vi(ti), ti)). (4)

Similarly,

Fi(V
−1
i (v)) = 1− e

−
∫ V−1

i
(v)

ti

1
t′−Vi(t

′)dt′
(v ∈ [Vi(ti), ti))). (5)
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Using (4) and (5), we can determine the marginal effect of a change of a bidder’s virtual

valuation on her logarithmic hazard rate and logarithmic density,

d

dv
ln λi(V

−1
i (v)) =

1− (V −1
i )′(v)

V −1
i (v)− v

(v ∈ [Vi(ti), ti)), (6)

d

dv
ln fi(V

−1
i (v)) =

1− 2(V −1
i )′(v)

V −1
i (v)− v

(v ∈ [Vi(ti), ti)). (7)

Assumption 2 (UB) of Zheng states that the bidders i = 1, . . . , n can be ranked in terms

of the support Ti and of the virtual valuation function Vi. Observe that Assumption 2 is

equivalent to hazard rate dominance if T1 = . . . = Tn.3

Assumption 2 (Uniform Bias) For all i, j = 1, . . . , n, if i < j then Ti ⊆ Tj and Vi(x) ≥
Vj(x) for all x ∈ Ti.

By (1) and UB,

∀i, j = 1, . . . , n : if i < j then Vi(Ti) ⊆ Vj(Tj). (8)

For i < j, let νij(ti) = V −1
j (Vi(ti)). Zheng defines functions βij : Ti → Tj implicitly by

Fj(βij(ti)) = Fj(νij(ti)) + (νij(ti)− ti)fj(νij(ti)). (9)

The βij functions play a central role in Zheng’s equilibrium construction.4 In particular, he

requires Assumption 3 (RM).

Assumption 3 (Resale Monotonicity) For all i, j = 1, . . . , n, if i < j then βij is weakly

increasing.

Simplifying equation (9) and solving for βij yields

3Hazard rate dominance is a stronger requirement than stochastic dominance and a weaker requirement

than likelihood ratio dominance (see, e.g., Krishna (2002, Appendix B)).
4 Observe that the functions νij , and hence the functions βij , are, in general, well-defined only if UB

holds. Lebrun (2005) relaxes UB and extends the definition of βij . Accordingly, he obtains a generalized

version of RM.
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Lemma 1 For all i, j = 1, . . . , n, if i < j then for all ti ∈ Ti,

βij(ti) = F−1
j

(
1− fj(νij(ti))

λi(ti)

)
if ti < ti,

and βij(ti) = tj.

Proof. Dividing (9) by fj(νij(ti)) and using the definition of Vj yields that (9) is equivalent

to

∀ti ∈ [ti, ti] :
Fj(βij(ti))− 1

fj(νij(ti))
−Vj(νij(ti)) + ti︸ ︷︷ ︸

=−Vi(ti)+ti

= 0. (10)

The fact that βij(ti) = tj follows because −Vi(ti) + ti = 0. The proof is completed by noting

that −Vi(ti) + ti = 1/λi(ti) for all ti < ti. QED

From Lemma 1 one sees that RM is satisfied if and only if, for all i < j,

λi(ti)

fj(νij(ti))
is weakly increasing for all ti ∈ [ti, ti). (11)

The reason it is difficult to see which c.d.f. profiles satisfy RM is that the expression fj(νij(ti))

in (11) depends on bidder i’s c.d.f. as well as bidder j’s c.d.f.. If, however, (11) is refor-

mulated in terms of virtual valuations, and the logarithm is taken, then quantities referring

to bidder i become additively separated from quantities referring to bidder j. This yields

a characterization of RM in terms of differential inequalities (12) involving inverse virtual

valuation functions.

Proposition 1 Suppose that HR and UB hold. Then RM holds if and only if, for all i < j,

∀v ∈ [Vi(ti), ti) :
1− (V −1

i )′(v)

V −1
i (v)− v

≥ 1− 2(V −1
j )′(v)

V −1
j (v)− v

. (12)

Proof. By Lemma 1, βij is weakly increasing if and only if (11) holds. Substitution of

variables ti = V −1
i (v) yields that βij is weakly increasing if and only if

λi(V
−1
i (v))

fj(V
−1
j (v))

is weakly increasing for all v ∈ [Vi(ti), ti).

Taking the logarithm yields that βij is weakly increasing if and only if

ln λi(V
−1
i (v))− ln fj(V

−1
j (v)) is weakly increasing for all v ∈ [Vi(ti), ti).
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Because a continuously differentiable function is weakly increasing if and only if its derivative

is non-negative, βij is weakly increasing if and only if

d

dv
ln λi(V

−1
i (v)) ≥ d

dv
ln fj(V

−1
j (v)) (v ∈ [Vi(ti), ti)).

Using (6) and (7), the proof is complete. QED

It is not possible to simplify (12) by using additional properties of virtual valuation func-

tions, because there are essentially no additional properties: any continuously differentiable

function defined on an interval [ti, ť] (ť < ti) with derivative not smaller than 1 and values

below the identity function can be extended to the virtual valuation function of some c.d.f.

Fi satisfying HR (to see this, use, e.g., Krishna, 2002, p. 255).

In environments with two bidders, the conditions assumed in Zheng (2002) are HR, UB,

and RM. Proposition 1 can then be used to compute all c.d.f. profiles satisfying Zheng’s

assumptions: for any given c.d.f. of bidder n = j = 2, (12) provides a linear differential

inequality for the c.d.f. of bidder i = 1. Observe that RM is satisfied whenever the c.d.f. of

bidder n = 2 has a weakly decreasing density. In this case, the left-hand side of (12) with

i = 1 is ≥ 0 by (2), and the right-hand side of (12) with j = 2 is ≤ 0 by (3).5

For environments with n ≥ 3 bidders, Zheng (2002) makes the additional assumptions

Transitivity (TR) and Invariance (IV). Let β−1
ij (tj) = inf{ti ∈ Ti | βij(ti) ≥ tj} for tj ≤ tj.

Assumption 4 (Transitivity) If bidder i is ranked before bidder j and j is ranked before

bidder k (i < j < k), then for any tj less than or equal to the supremum of the range of βij,

βik(β
−1
ij (tj)) ≥ V −1

k (Vj(tj)).

5Things are less straightforward if bidder 2’s density is not weakly increasing. The right-hand side of (12)

is then > 0 for some v = v̌. Condition RM can still hold (for example, when both bidders have the same

c.d.f. F1 = F2). However, one can always find bidder-1 c.d.f.s (with the same support as the bidder-2 c.d.f.)

such that RM is violated. The proof works by constructing bidder 1’s c.d.f. such that the left-hand side of

(12) equals 0 at v = v̌ (Mylovanov and Tröger, 2005).
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Assumption 5 (Invariance)

For all w = 1, . . . , n, and i, j > w, if ti ≤ βwi(tw) and tj ≤ βwj(tw),

then Vi(ti) ≥ (resp. =)Vj(tj) implies fi(νwi(tw))/fi(ti) ≥ (resp. =)fj(νwj(tw))/fj(tj).
6

The following result characterizes IV in terms of a set of differential equations and in-

equalities involving inverse virtual valuation functions. The proof begins by reformulating

IV in terms of virtual valuations (Lemma 2). From this reformulation one sees (13) that IV

requires the expressions (7) to be identical for all bidders except bidder 1. The inequality

part in the definition of IV is captured in (14), which by (3) is equivalent to the requirement

that all c.d.f.s except bidder 1’s have a weakly decreasing density.

Proposition 2 Suppose that n ≥ 3 and HR and UB hold. Then IV holds if and only if for

all j > i ≥ 2,

∀v ∈ [Vi(ti), ti) :
1− 2(V −1

i )′(v)

V −1
i (v)− v

=
1− 2(V −1

j )′(v)

V −1
j (v)− v

, (13)

(V −1
i )′ ≥ 1/2. (14)

The proof of Proposition 2 relies on

Lemma 2 Suppose that n ≥ 3 and HR and UB hold. Then IV holds if and only if for

i, j ≥ 2 there exist constants cij > 0 such that

∀vi ∈ Vi(Ti), vj ∈ Vj(Tj) : vi ≥ (resp. =)vj ⇒ fi(V
−1
i (vi))

fj(V
−1
j (vj))

≤ (resp. =)cij. (15)

Proof of Lemma 2. “only if”: Define ti = V −1
i (vi) and tj = V −1

j (vj). By Lemma 1,

ti ≤ ti = β1i(t1), and tj ≤ tj = β1j(t1). Hence, using IV with w = 1 and tw = t1,

fi(V
−1
i (vi))

fj(V
−1
j (vj))

=
fi(ti)

fj(tj)
≤ (resp. =)

fi(ν1i(t1))

fj(ν1j(t1))
=: cij.

“if”: Consider i, j > w ≥ 1 and ti ≤ βwi(tw), tj ≤ βwj(tw) such that Vi(ti) ≥ (resp. =)Vj(tj).

Using (15) with vi = vj = Vw(tw),

cij =
fi(V

−1
i (Vw(tw)))

fj(V
−1
j (Vw(tw)))

=
fi(νwi(tw))

fj(νwj(tw))
. (16)

6Zheng’s paper contains a typo in Assumption 5 that is corrected here. He requires that “>” implies

“>”, but this is not needed and obviously is not meant because it would be violated by his own Example 3.
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Using (15) with vi = Vi(ti) and vj = Vj(tj),

fi(ti)

fj(tj)
≤ (resp. =)cij

(16)
=

fi(νwi(tw))

fj(νwj(tw)
.

This completes the proof. QED

Proof of Proposition 2. “only if”: Let j > i ≥ 2. Taking the logarithm on the r.h.s. of

(15), there exist constants Cij such that for all vi ∈ Vi(Ti) and vj ∈ Vj(Tj),

vi ≥ (resp. =)vj ⇒ ln(fi(V
−1
i (vi))) ≤ (resp. =) ln(fj(V

−1
j (vj))) + Cij. (17)

Using (17) with v = vi = vj,

∀v ∈ [Vi(ti), ti) : ln(fi(V
−1
i (v))) = ln(fj(V

−1
j (v))) + Cij. (18)

Taking derivatives in (18) and using (7), we obtain (13).

Using (15) with i = j ≥ 2 and vi = vj, one sees that cii = 1. Hence, (15) implies that

fi(V
−1
i (·)) is weakly decreasing, which implies (14) by (3).

“if”: By (13) and (7), there exist constants Cij such that (18) holds for j > i ≥ 2.

Applying the exponential function to (18) yields

∀v ∈ [Vi(ti), ti) :
fi(V

−1
i (v))

fj(V
−1
j (v))

= cij, (19)

where we define cij = exp Cij. For all i ≥ 2, define cii = 1. For all i > j ≥ 2, define

cij = 1/cji. By (19), for all i, j ≥ 2,

∀v ∈ Vi(Ti) ∩ Vj(Tj) :
fi(V

−1
i (v))

fj(V
−1
j (v))

= cij. (20)

Using (14) and (3), fi(V
−1
i (·)) and fj(V

−1
j (·)) are weakly decreasing. Together with (20) this

implies (15), and IV follows by Lemma 2. QED

From Propositions 1 and 2 it is easy to see that IV implies RM.7

7Alternatively, Proposition 3 can be obtained directly from Lemma 1. Using the definition of IV with

w = 1, tw = t1, and tj = νij(ti), one sees that fj(νij(ti))/fi(ti) is independent of ti for all j > i ≥ 2. Hence,

fj(νij(ti))/λi(ti) = (fj(νij(ti))/fi(ti))(1−Fi(ti)) is strictly decreasing in ti, which implies that βij is weakly

increasing by Lemma 1. Using the definition of IV with w = 1, tw = t1, and i = j ≥ 2, one sees that fj

is weakly decreasing, hence fj(ν1j(t1))/λ1(t1) is weakly decreasing in t1 by HR, which implies that β1j is

weakly increasing by Lemma 1.
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Proposition 3 Suppose that n ≥ 3 and HR, UB, and IV hold. Then RM is satisfied.

Proof. By Proposition 2, for all j > i ≥ 2 and all v ∈ [Vi(ti), ti),

1− (V −1
i )′(v)

V −1
i (v)− v

(2)

≥ 1− 2(V −1
i )′(v)

V −1
i (v)− v

=
1− 2(V −1

j )′(v)

V −1
j (v)− v

,

which shows (12) for all j > i ≥ 2. For all j ≥ 2,

1− (V −1
1 )′(v)

V −1
1 (v)− v

(2)

≥ 0
(14)

≥ 1− 2(V −1
j )′(v)

V −1
j (v)− v

(v ∈ [V1(t1), t1)),

showing (12) for all j > i = 1. QED

The next result shows that IV implies TR. The proof relies on auxiliary functions

yli(v) =
∫ VlβilV

−1
i (v)

v

(V −1
l )′(w)

V −1
l (w)− w

dw. (l > i, v ∈ Vi(Ti)). (21)

From UB it follows that yli(v) is weakly increasing in l.8 From UB and IV it follows (24)

that the integrand in (21) is weakly decreasing in l. Hence, the area of integration must

be weakly increasing in l, which implies TR, where we use a restatement of TR in terms of

virtual valuations (22).

Proposition 4 Suppose that n ≥ 3 and HR, UB, and IV hold. Then TR is satisfied.

Proof. To show TR, it is sufficient that, for all i < j < k and v ∈ Vi(Ti),

VkβikV
−1
i (v) ≥ VjβijV

−1
i (v). (22)

(To see this, set v = Vi(β
−1
ij (tj)), and use that βij is weakly increasing by Proposition 3.)

By Lemma 1 with ti = V −1
i (v), we have 1− Flβil(V

−1
i (v)) = fl(V

−1
l (v))(V −1

i (v)− v) for

all l > i. Hence,

1− FlV
−1
l (VlβilV

−1
i (v)) = fl(V

−1
l (v))(V −1

i (v)− v).

8The intuition is as follows. Using (5), e−yli(v) = Fl(βilV
−1
i (v))−Fl(V −1

l (v)) equals the probability that

bidder i, if her virtual valuation equals v and if no other bidders are involved, wins against bidder l and

subsequently resells to l, according to Zheng’s equilibrium construction. UB implies that this probability is

weakly decreasing in l. Thus, yli is weakly increasing in l.
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Hence, using (4) and (5),

e
−

∫ βilV
−1
i

(v)

tl

1
t′−Vl(t

′)dt′
=

V −1
i (v)− v

V −1
l (v)− v

e
−

∫ V−1
l

(v)

tl

1
t′−Vl(t

′)dt′
.

Rearranging yields

∫ βilV
−1
i (v)

V −1
l

(v)

1

t′ − Vl(t′)
dt′ = ln

V −1
l (v)− v

V −1
i (v)− v

.

Substitution of variables w = Vl(t
′) yields

yli(v)
(21)
=

∫ VlβilV
−1
i (v)

v

(V −1
l )′(w)

V −1
l (w)− w

dw = ln
V −1

l (v)− v

V −1
i (v)− v

.

Hence, using UB,

yki(v) ≥ yji(v). (23)

Using the characterization of IV in Proposition 2,

2(V −1
k )′(v)

V −1
k (v)− v

− 2(V −1
j )′(v)

V −1
j (v)− v

=
1

V −1
k (v)− v

− 1

V −1
j (v)− v

UB≤ 0. (24)

Suppose that (22) fails. Then,

yki(v) <
∫ VjβijV −1

i (v)

v

(V −1
k )′(w)

V −1
k (w)− w

dw
(24)

≤ yji(v), (25)

in contradiction with (23). QED

Propositions 2, 3, and 4 suggest a procedure to construct systematically all c.d.f. profiles

that satisfy Zheng’s assumptions if n ≥ 3. One begins with an arbitrary profile of nested

supports for the bidders’ c.d.f.s, and with any c.d.f. for bidder n that is consistent with HR

and satisfies (V −1
n )′ ≥ 1/2 (this inequality is necessary for IV, see (14)). Then one solves

the differential equations (13) with j = n to compute inverse virtual valuation functions for

bidders 2 to n − 1 (the solutions will depend on the chosen supports). The corresponding

c.d.f.s can be calculated from (5). Finally, one chooses for bidder 1 any c.d.f. that is

consistent with HR and UB. Proposition 5 shows that this procedure works.

The following result provides a complete characterization of the set of c.d.f. profiles sat-

isfying HR, UB, RM, TR, and IV. In particular, we give the solutions (26) to the differential

equations (13).
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Proposition 5 Let n ≥ 3. Let T1 ⊆ . . . ⊆ Tn be any compact intervals. Let Fn be any c.d.f.

that is consistent with HR and satisfies (V −1
n )′ ≥ 1/2.

Then there exists a unique profile (F2, . . . , Fn−1) such that HR, UB, RM, TR, and IV

hold for (F1, . . . , Fn), where F1 is any c.d.f. that is consistent with HR and UB.

For all j > i ≥ 2 and v ∈ [Vi(ti), ti],

V −1
i (v) = V −1

j (v)−
√

(V −1
j (v)− v)(V −1

j (ti)− ti) e
− 1

2

∫ V−1
j

(ti)

V−1
j

(v)

1
t′−Vj(t′)dt′

. (26)

The proof of Proposition 5 relies on

Lemma 3 Let l ∈ {2, . . . , n−1}. Let Fl+1 denote a c.d.f. that is consistent with HR and has

a weakly decreasing density. Let Vl+1 denote the corresponding virtual valuation function.

Then, for any interval [t, t] ⊆ [Vl+1(tl+1), tl+1], there exists a unique continuously differ-

entiable function g on [t, t] such that

g ≤ V −1
l+1, (27)

g(t) = t, (28)

and

∀v ∈ [t, t) :
2g′(v)− 1

g(v)− v
=

2(V −1
l+1)

′(v)− 1

V −1
l+1(v)− v

=: hl+1(v). (29)

Proof of Lemma 3. Suppose that t < tl+1. Because hl+1 is continuous at v = t, standard

results for differential equations (see, e.g., Walter (1998, p. 62)) show the existence of a

unique g satisfying (28) and (29). It remains to show (27). From (29),

∀v ∈ [t, t) : if g(v) > V −1
l+1(v) then g′(v) ≥ (V −1

l+1)
′(v).

Hence, if g(v̂) > V −1
l+1(v̂) for some v̂ < t, then g(t) > V −1

l+1(t). On the other hand, V −1
l+1(t) ≥

t = g(t) by definition of Vl+1, a contradiction. Thus, (27).

Now suppose that t = tl+1. Because hl+1(v) →∞ as v → t, standard uniqueness results

for differential equations do not apply. However, g = V −1
l+1 obviously satisfies (27), (28), and

(29). Let g = k denote another function satisfying the same conditions.
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Multiplying (29) by g(v) − v and subtracting the resulting expression with g = k from

the resulting expression with g = V −1
l+1 yields the homogeneous linear equation 2m′(v) =

m(v)hl+1(v) for m := V −1
l+1 − k. Hence,

k(v) = α e
∫ v

t

hl+1(w)

2
dw

+ V −1
l+1(v), (30)

for some α ∈ IR. Because k ≤ V −1
l+1 by (27), we have α ≤ 0. By (30),

k′(v) = α
hl+1(v)

2
e
∫ v

t

hl+1(w)

2
dw

+ (V −1
l+1)

′(v). (31)

By (3), hl+1(v) ≥ 0. Hence, (31) implies k′(v) ≤ (V −1
l+1)

′(v). Together with k(t) = t = V −1
l+1(t)

this implies k ≥ V −1
l+1. Hence, k = V −1

l+1. QED

Proof of Proposition 5. By Propositions 3 and 4, we can ignore RM and TR throughout

the proof.

“Existence”: We show the existence of F2, . . . , Fn−1 by proving inductively, for all l < n,

claim

(*l) There exists a profile Fl+1, . . . , Fn that is consistent with HR and UB, (13)

holds for all j > i ≥ l + 1, and (V −1
i )′ ≥ 1/2 for all i ≥ l + 1.

Claim (*(n − 1)) holds by assumption. Suppose that (*l) holds for some l ∈ {2, . . . , n −
1}. Let Vl+1 denote the virtual valuation function for Fl+1. By Lemma 3, there exists a

continuously differentiable function g on [Vl+1(tl+1), tl] such that (27), (28), and (29) hold

with t = Vl+1(tl+1) and t = tl.

Recall from (2) and (3) that

∀v ∈ [Vl+1(tl+1), tl] :
1

2
≤ (V −1

l+1)
′(v) ≤ 1. (32)

Consider

A = arg min
v∈[Vl+1(tl+1),tl]

g(v)− v.

If v̂ < tl and v̂ ∈ A, then g′(v̂) − 1 ≥ 0 from the first-order conditions, hence g(v̂) − v̂ > 0

by (29) and (32), in contradiction with (28). We conclude that A = {tl}. Hence,

∀v ∈ [Vl+1(tl+1), tl) : g(v) > v. (33)
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From (29), (32), and (33),

∀v ∈ [Vl+1(tl+1), tl] : g′(v) ≥ 1

2
. (34)

In particular, we can define the inverse

g−1 : [g(Vl+1(tl+1)), tl] → [Vl+1(tl+1), tl]. (35)

From (27) we obtain g(Vl+1(tl+1)) ≤ tl+1 ≤ tl. Hence, g−1 exists on [tl, tl]. Moreover, by

(33), t′ − g−1(t′) > 0 for all t′ ∈ [tl, tl). Thus, we can define

Fl(t) =





1− e
−

∫ t

tl

1
t′−g−1(t′)dt′

if t ∈ [tl, tl),

1 if t = tl.
(36)

The function Fl is continuous at tl because, for all t < tl,

∫ t

tl

1

t′ − g−1(t′)
dt′ =

g−1(t)∫

g−1(tl)

g′(w)

g(w)− w
dw

>

g−1(t)∫

g−1(tl)

g′(w)− 1

g(w)− w
dw

= ln(t− g−1(t))− ln(tl − g−1(tl))

→t→tl
∞ because tl − g−1(tl) = 0.

From (36) we obtain on [tl, tl) the continuously differentiable density

fl(t) =
1

t− g−1(t)
e
−

∫ t

tl

1
t′−g−1(t′)dt′

(t ∈ [tl, tl)). (37)

Using (4) with i = l + 1 and (37), equation (29) implies that the derivative (ln fl(g(v)))′ =

ln(fl+1(V
−1
l+1(v)))′ for all v ∈ [g−1(tl), tl). Hence,

∃c > 0 ∀v ∈ [g−1(tl), tl) : fl(g(v)) = cfl+1(V
−1
l+1(v)). (38)

Because fl+1(V
−1
l+1(g

−1(·))) is continuously differentiable on [tl, tl], (38) shows that fl extends

continuously differentiable to the point t = tl.

Define Vl = g−1|Tl
. Using (27), equation (29) implies g′ ≤ (V −1

l+1)
′. Hence, g′ ≤ 1 by (32).

Hence, V ′
l ≥ 1, which implies that (1 − Fl(·))/fl(·) is weakly decreasing. In summary, Fl

14



is consistent with HR. By (34), (V −1
l )′ ≥ 1/2. By (27), Fl is consistent with UB. By (29),

equation (13) holds with i = l and j = l + 1. By induction, (13) holds for all j ≥ i = l. This

completes the proof of claim (*(j − 1)).

“Uniqueness”: Let l ∈ {2, . . . , n− 1}. Consider a c.d.f. Fl+1 that is consistent with HR.

Let Vl+1 denote the corresponding virtual valuation function. Consider two c.d.f.s F and F̌

for bidder l with support Tl that are consistent with HR, UB, and IV. Denote by V and V̌

the corresponding virtual valuation functions. Without loss of generality, V (tl) ≤ V̌ (tl). By

Proposition 2 and the uniqueness statement in Lemma 3,

∀v ∈ [V̌ (tl), tl] : V −1(v) = V̌ −1(v). (39)

Applying (39) at v = V̌ (tl) yields V −1(V̌ (tl)) = V̌ −1(V̌ (tl)) = tl, hence V̌ (tl) = V (tl). This

together with (39) implies V = V̌ and thus F = F̌ , completing the uniqueness proof.

It remains to verify (26). Let g denote a function on [Vi(ti), ti] that equals the r.h.s.

of (26). It is straightforward to check that g satisfies (27), (28), and (29) with l = j − 1,

t = Vi(ti), and t = ti. Hence, g = V −1
i on [Vi(ti), ti] by Proposition 2 and the uniqueness

statement in Lemma 3. QED

It is interesting to contrast Proposition 5 with Zheng (2002, Example 3), where it is

shown that Zheng’s conditions are satisfied if every bidder’s c.d.f. is uniform (on a possibly

different interval for each bidder). Proposition 5 reveals that if the c.d.f. for bidder n is

uniform, then the conditions are satisfied if and only if the c.d.f.s for bidders 2 to n− 1 are

uniform as well (with nested supports), while bidder 1 may have any c.d.f. that is consistent

with HR and UB.

The corollary below describes the c.d.f. profiles satisfying Zheng’s conditions if the largest

possible valuation is the same for the bidders 2 to n.

Corollary 1 Let n ≥ 3. Suppose that HR holds and t2 = . . . = tn.

Then UB, RM, TR, and IV are satisfied if and only if (i) T1 ⊆ T2 and t2 ≥ . . . ≥ tn, (ii)

V1(t1) ≥ V2(t1) for all t1 ∈ T1, (iii) the density fn is weakly decreasing, and (iv)

∀i ≥ 2 : Fi(t) =
Fn(t)− Fn(ti)

1− Fn(ti)
(t ∈ Ti). (40)
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In general, it can take up to n subsequent sale transactions on Zheng’s (2002) equilibrium

path until the final allocation is obtained. Corollary 1 implies that there will be at most two

transactions if the largest possible valuation is the same for the bidders 2 to n. From (40) it

follows that whenever bidder i ≥ 2 has a larger valuation than bidder j ≥ 2, then i’s virtual

valuation is also larger than j’s. Given this, there will be no resale trading between bidders

2 to n on the equilibrium path—the final allocation is obtained by the initial auction or by

a resale transaction from bidder 1 to one of the other bidders if bidder 1 wins the initial

auction.
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