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1 Introduction

This paper provides a new analytical framework for studying contracting prob-

lems with adverse selection and limited commitment. We consider a principal–

agent setup in which the principal is imperfectly informed about the agent’s type.

Further, he cannot contractually commit himself to some actions. The principal

may, however, extract information from the agent by employing a general com-

munication device. This device uses as input a report submitted by the agent

and generates as output a publicly observable message. The set of possible in-

puts and outputs and the rules for transforming inputs into outputs are part of

the contract.

General communication devices are well known from game theory (e.g. Myer-

son (1982), Forges (1986)), but are not generally used in contract theory.1 This is

surprising because it is well known that the set of implementable allocations may

be strictly larger when players use indirect rather than direct communication.

Yet, contract theory normally restricts attention to one–shot, direct communi-

cation, where the agent simply sends a single message directly to the principal.

This restriction is unproblematic when the principal has full commitment; but for

settings with imperfect commitment it is overly restrictive in two respects. First,

already Forges (1990b) has demonstrated that multiple communication stages

between one privately informed (the agent) and one uninformed party (the prin-

cipal) enlarges the set of outcomes. More recently, Krishna and Morgan (2004)

show that in the cheap talk game of Crawford and Sobel (1982) two rounds of

communication typically generate Pareto improvements.2 Second, as the commu-

nication literature (e.g. Myerson (1982), Forges (1986)) shows, even mechanisms

with multiple stages of direct communication are restrictive in comparison to

mechanisms that allow for indirect communication.3 For these reasons, the use

of one–shot, direct communication in contracting problems with imperfect com-

mitment appears questionable. Consequently, we adopt general communication

devices to study such contracting problems.

Moreover, general communication devices also allow us to solve two analytical

1In a rather different context Laffont and Martimort (1997) consider a communication de-
vice to study the bargaining behavior between a supervisor and an agent under two–sided
asymmetric information.

2See also Aumann and Hart (2003) for analytical tools to study optimal communication in
cheap talk games.

3See also Krishna and Morgan (2004) and Mitusch and Strausz (2005).
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problems that prevent a tractable analysis of contracting problems with imperfect

commitment: First, with general communication devices, we are able to identify

the relevant incentive restrictions. As a result, even under imperfect commitment

the principal’s contracting problem can be solved by following a routine that is

familiar from the theory of contracting with full commitment. Indeed, we first

show that the global incentive compatibility constraints can be replaced by the

usual local downward constraints, if the agent’s preferences satisfy a standard

single–crossing property. This information about the structure of the optimal

contract allows us to concentrate on a relaxed problem that is much easier to

solve than the original contracting problem. Second, for the relaxed problem

it is sufficient to consider message spaces that have the same cardinality as the

agent’s type space: Not only the set of ingoing reports but also the set of outgoing

messages can be taken as a copy of the set of the agent’s types. Thus the agent

reveals his type truthfully to the communication system, which then generates a

message suggesting a type of the agent. Yet, typically the principal will remain

imperfectly informed because the optimal communication system is noisy; it con-

verts the agent’s report into a message according to non–degenerate transition

probabilities.

We therefore stress that communication devices not only generalize but also

simplify the analysis of contracting problems with imperfect commitment. In-

deed, the literature so far has been rather unsuccessful in developing a manage-

able framework for these types of contracting problems, which inevitably arise

when addressing issues such as ex post renegotiation (e.g. Dewatripont (1989)),

repeated short–term contracting (e.g. Laffont and Tirole (1986)), or environments

in which the principal takes some non–verifiable, and hence non–contractible, de-

cision (e.g. Khalil (1997)). Laffont and Tirole (1986) illustrate the difficulties

of extending the standard contracting framework to problems of imperfect com-

mitment. It leads them to conclude that “the lack of commitment in repeated

adverse–selection situations leads to substantial difficulties for contract theory”

(Laffont and Tirole (1993), p. 377). This paper shows that these difficulties are

in fact related to the restriction to one–shot, direct communication. Indeed, for

this type of communication Bester and Strausz (2001) establish a variation of

the Revelation Principle4 which allows stating the contracting problem as a well–

defined maximization program with the usual incentive compatibility constraints.

Yet, even when the agent’s preferences satisfy a single–crossing condition, it re-

4See Gibbard (1973), Green and Laffont (1977), Dasgupta et. al. (1979) and Myerson
(1979).
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mains unclear which of these constraints are binding. Solving the contracting

problem requires a laborious checking of all combinations of incentive constraints

(e.g. Laffont and Tirole (1987)).

Our first step in showing that general communication devices improve

tractability is to adopt the Revelation Principle for Bayesian games (see: Myerson

(1982), Forges (1986)). This principle states that, without loss of generality, the

principal may use an incentive compatible contract. Under such a contract, the

set of the agent’s reports is simply the set of his types and his optimal strategy

is to announce his type truthfully to the communication system. Therefore the

contracting problem may be formulated as a maximization problem with incen-

tive and individual rationality constraints. We show that this problem may be

drastically simplified if the agent’s preferences satisfy a single–crossing condition.

Similarly to contracting problems with full commitment, this condition implies a

monotonicity property of implementable allocations. Conversely, the monotonic-

ity property together with the downward incentive constraints guarantees that all

of the incentive compatibility and individual rationality conditions are satisfied.

If there are |T | types of the agent, this means that the |T |×|T −1|+ |T | incentive

compatibility and individual rationality constraints can be replaced by 2 |T | − 1

downward incentive and monotonicity constraints.

Replacing the global incentive constraints by local constraints is, however,

only the first step towards making the contracting problem tractable. Accord-

ing to the Revelation Principle for Bayesian games, the communication device

involves a set of outgoing messages with the same dimensionality as the set of the

principal’s actions. This creates a difficulty for computing an optimal communi-

cation device when the principal’s action set is large. We address the problem of

the cardinality of the message space by noting that monetary transfers and the

vectors of transition probabilities of the communication device enter the princi-

pal’s problem linearly. Therefore, we can apply a result from the theory of linear

semi-infinite programming to show that a message set of cardinality |T | is suffi-

cient to support an optimal contract as long as the monotonicity constraints are

not binding. When some monotonicity constraints are binding, the cardinality

of the message set increases by the number of binding monotonicity constraints.

Since there are exactly |T | − 1 monotonicity constraints, the cardinality of the

optimal message set is at most 2|T | − 1.

In summary, our findings allow us to derive the solution of the contracting

problem by using the same methodology as for contracting with full commitment:
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For a communication system with |T | outgoing messages, we consider a maximiza-

tion program where the global incentive and individual rationality constraints are

replaced by the downward incentive compatibility constraints. If the solution of

this program satisfies the monotonicity constraints, then it represents an optimal

contract. If not, then one may use the repetitive procedure of including a binding

monotonicity constraint in the maximization program and raising the number of

outgoing messages by one, until one obtains a solution under which all the omit-

ted monotonicity constraints are not binding. We illustrate this methodology in

an example with |T | = 2, where monotonicity is automatically satisfied. Also, in

this example noisy communication is superior to direct communication.

In Section 2 we describe the contracting environment. The concept of a com-

munication device is explained in Section 3. In Section 4 we use the single–

crossing assumption to show that the global incentive constraints can be replaced

by local constraints. We address the cardinality of the message space under an op-

timal communication device in Section 5. Section 6 contains concluding remarks.

All proofs are relegated to an appendix.

2 The Environment

Consider a two–stage contracting problem between a principal and an agent.

In the first stage, the principal can contractually commit himself to a decision

x ∈ X and a monetary transfer w ∈ IR. In the second stage, he selects a decision

y ∈ Y (x) ⊂ Y. The latter decision is not contractible in the first stage and so the

principal will choose y at his own discretion. We allow the contractible decision

x to limit the feasible set Y (x) of non–contractible decisions.

In addition to the restriction of imperfect commitment, the contracting parties

face a problem of one–sided asymmetric information: In stage 1 the agent has

private information about his type ti ∈ T = {t1, . . . , t|T |}, where |T | < ∞. The

principal only knows the probability distribution γ = (γ1, . . . , γ|T |) of the agent’s

type, with γi > 0 and
∑

i γi = 1. The payoffs of the two parties depend on the

agent’s type ti, the decisions (x, y) and the monetary transfer w. We denote the

principal’s payoff by vi(x, y)−w and the agent’s payoff by ui(x, y)+w. The agent

has the option to refuse to contract with the principal; his reservation payoff

equals zero, independently of his type.

Contract theory makes extensive use of single–crossing conditions on the

agent’s preferences. These conditions imply an ordering of the agent’s types,
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which is natural in many economic environments. In our context we impose a

single–crossing property by the following assumption:

Assumption 1 (Single–Crossing Property) There exists a z = (z1, . . . , z|T |)
∈ IR

|T |
++ and a pair of functions ϕ: X × Y → IR, ψ: X × Y → IR such that

ui(x, y) = zi ϕ(x, y) + ψ(x, y). (1)

Moreover, either ϕ(x, y) < 0 for all (x, y) ∈ X × Y and zi > zi+1 for all ti ∈
T\{t|T |}, or ϕ(x, y) > 0 for all (x, y) ∈ X × Y and zi < zi+1 for all ti ∈ T\{t|T |}.

This formulation of the single–crossing property is familiar from contracting

problems with full commitment (e.g. Baron and Myerson (1982), Maskin and

Riley (1984), and Mussa and Rosen (1978)). Indeed, our framework contains

such problems as the special case where the set Y is a singleton. In this case

there is no commitment problem and only the contractible decision x is available

for screening purposes.

Whenever, for some x ∈ X, the set Y (x) contains more than one element, the

principal faces a contracting problem with imperfect commitment. An example is

Khalil (1997), where, after the contracting stage, the principal has the possibility

to audit the agent. Since the principal is unable to commit contractually to an

auditing strategy, he selects ex–post the probability of an audit from the set

Y (x) = Y = [0, 1]. We want to stress, however, that the decision variables x

and y may be more general than simple actions. For instance, the decision y

may represent a continuation contract in a framework of repeated contracting

without commitment (e.g. Laffont and Tirole (1986, 1987)). Moreover, since we

allow the decision x to restrict the set Y , we may also use our environment to

study problems of renegotiation (e.g. Laffont and Tirole (1990), Rey and Salanie

(1996)). By employing the technique of dynamic programming, our environment

is also applicable to multi–stage contracting problems with limited commitment

(e.g. Hart and Tirole (1988)).5 Hence, our framework is applicable to the type

of contracting problems with imperfect commitment that have been addressed in

the literature.

Under our Assumption 1 private information is essentially one–dimensional.

Consequently, our model addresses the class of one–dimensional screening prob-

lem with imperfect commitment. Indeed, as emphasized in Matthews and Moore

(1987), the single–crossing condition only makes sense in problems with one–

5For an exact demonstration of this approach see Bester and Strausz (2001).
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dimensional private information. We do not study multi–dimensional screening

problems, which generate a number of analytical difficulties already within the

framework of full commitment (see e.g. Rochet and Chone (1998)).

In the following sections we illustrate the role of noisy communication by an

example which is based on Miyazaki (1977). The same example is used in Bester

and Strausz (2001), where the analysis is restricted to single–stage face–to–face

communication.

Example: There are two types of agents; each type is equally likely. The prin-

cipal chooses the agent’s speed of work y ∈ IR+ and pays him a wage w. When

the agent’s type is ti, the principal’s and the agent’s payoffs are vi(y) − w and

ui(y) + w, respectively, with

v1(y) = 10y − y2, v2(y) = 10y − y2/4, u1(y) = −y2/5, u2(y) = −y2/6. (2)

The agent’s utility satisfies Assumption 1 for the specification ϕ(x, y) = −y2,

ψ(x, y) = 0, z1 = 1/5, and z2 = 1/6. ¦

3 Communication

To address the problem of asymmetric information, the principal selects a commu-

nication device, which is a convenient, technical description of information trans-

mission in most general form.6 The device allows the agent to send a report upon

which the principal receives a message. More specifically, a communication device

D = (R,M,B) specifies a set of reports R = {r1, . . . , rk, . . . , r|R|} with |R| ≤ ∞,

a set of messages M = {m1, . . . , mh, . . . , m|M |} with |M | ≤ ∞, and a mapping

B: R → ∆(M), where ∆(M) denotes the set of probability distributions over M.7

In what follows, we use the notation B(rk) = βk = (βk1, . . . , βkh, . . . , βk|M |). The

interpretation of a communication system is that the principal receives message

mh with probability βkh after the agent has chosen the report rk. Note that the

principal cannot directly observe the agent’s report.

6The communication literature (e.g. Barany (1992), Ben-Porath (1998, 2003), Forges (1988,
1990a)) has investigated to what extent the somewhat mechanical concept of a communica-
tion device is equivalent to other, more conventional forms of communication in settings with
complete and incomplete information.

7To simplify the exposition and to avoid measure–theoretic complications, we restrict both
R and M to be countable. Our analysis can be extended to the case where R and M are metric
spaces.
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A communication device D = (R, M,B) is deterministic if R = M and

βkk = 1. In this case, the principal receives the message mk with probability

one, when the agent sends the report mk. Deterministic communication devices

describe standard face–to–face communication, because the agent’s report is di-

rectly transmitted to the principal without noise. Due to his lack of commitment,

however, the principal may prefer not to receive too much information. By using

a non–deterministic communication device, he is able to fine–tune the amount of

information that is actually transferred to him.

The message received by the principal is publicly verifiable. For a given com-

munication system D, a contract specifies a first–stage decision x = (x1, . . . ,

xh, . . . , x|M |) and a monetary transfer w = (w1, . . . , wh, . . . , w|M |) contingent upon

the message received by the principal. Of course, the principal will also use this

message to update his beliefs about the agent’s type before selecting his second–

stage decision. Let p = (p11, . . . , pih, . . . , p|T ||M |) denote the principal’s beliefs.

Thus, upon observing message mh, the principal believes that the agent is of

type ti with probability pih ≥ 0, where
∑

i pih = 1. For each message mh, the

principal’s strategy y = (y1, . . . , yh, . . . , y|M |) specifies a second–stage decision

yh.
8

Given a communication system D and a contract (x,w), the principal and the

agent are involved in the following game: First the agent chooses a report, which

results in a message to the principal. After receiving a message the principal

selects a second–stage decision based upon his beliefs over the agent’s type. The

contracting parties are constrained to the outcomes that can be realized as a

Perfect Bayesian equilibrium of this game.

We allow the agent to employ a mixed reporting strategy and denote by

qi = (qi1, . . . , qik, . . . , qi|R|) the strategy of type ti. Thus, the ti–agent selects report

rk with probability qik ≥ 0, where
∑

k qik = 1. When selecting a report, the agent

anticipates the principal’s decision in the second stage. Therefore, the agent’s

reporting strategy q = (q1, . . . , qi, . . . , q|T |) is optimal if

qi ∈ argmaxq′i

∑
k,h

q′ik βkh [ui(xh, yh) + wh] , (3)

for all ti ∈ T. Given the belief p, the principal’s behaviour in the second stage

has to satisfy

yh ∈ argmaxy′
h

∑
i
pih [vi(xh, y

′
h)− wh] , (4)

8Note that Y may contain the set of probability distributions over some underlying set of
deterministic decisions. Therefore, we do not rule out random decisions.
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for all mh ∈ M. Finally, the principal’s belief is consistent with Bayesian updating

if

pih =
γi

∑
k qik βkh∑

j γj
∑

k qjk βkh

, (5)

for all mh ∈ M such that qjk βkh > 0 for some (tj, rk) ∈ T × R. In summary,

(q, y, p) constitutes a Perfect Bayesian equilibrium if conditions (3)–(5) are satis-

fied.

Part of the principal’s problem is finding an optimal communication system

D. The following result provides a first step in this direction by applying the

Revelation Principle for Bayesian games (see: Myerson (1982), Forges (1986)). It

shows that, without loss of generality, one can assume that the set of the agent’s

reports is a copy of his types and that the agent reveals his type truthfully to the

communication system.

Lemma 1 Consider a given contract (x,w). Suppose (q, y, p) is a Perfect Baye-

sian equilibrium under the communication system D = (R, M,B). Then there

exists a communication system D̂ = (R̂, M̂ , B̂) with R̂ = T and M̂ = M such

that (q̂, y, p) with q̂ii = 1, for all ti ∈ T, is a Perfect Bayesian equilibrium under

D̂. Moreover,
∑

k q̂ik β̂kh =
∑

k qik βkh for all (ti,mh) ∈ T×M, i.e. q̂i and qi induce

the same the probability distribution over M.

By Lemma 1, the principal may restrict himself to an incentive compatible

communication system, under which the agent reports his type honestly and the

communication device garbles this information when sending a message to the

principal.

Lemma 1 leaves open which restrictions can be imposed on the cardinality of

M. The Revelation Principle for Bayesian games actually goes beyond the lemma

by showing that, without loss of generality, the principal may set M = Y so that

he will select y after receiving the message m = y. The ‘canonical’ communication

device (T, Y,B) may therefore be interpreted as a mediator who first asks the

agent for his private information and subsequently recommends some action y to

the principal. This insight may be helpful for solving the contracting problem if

the set Y contains only a few elements. In most applications, however, Y will

be large because it includes continuous action choices or the set of continuation

contracts in a multi–stage environment. Therefore, we will establish a more

suitable restriction on M below in Section 5.
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Example: In Bester and Strausz (2001) it is shown that in our example the

principal’s maximum payoff is 55/2 when he is restricted to deterministic com-

munication. The principal attains this payoff with the contract w∗ = (5, 20)

and the deterministic communication device D = (T, T,B) with β11 = β22 = 1

and β12 = β21 = 0. The payoff is supported by the Perfect Bayesian Equilib-

rium (q∗, y∗, p∗) with q∗1 = (1/2, 1/2), q∗2 = (0, 1), y∗ = (5, 10), p∗1 = (1, 0) and

p∗2 = (1/3, 2/3). Thus, type t1 randomizes between messages and so the principal

remains imperfectly informed after receiving the message t2. In line with Lemma

1, this outcome under the deterministic device D can be replicated by a noisy

communication device D̂ so that the agent reports his type truthfully. Indeed, it

is easy to see that under D̂ = (R̂, M̂ , B̂) with R̂ = M̂ = T and β̂11 = β̂12 = 1/2,

β̂21 = 0 and β̂22 = 1 the outcome (q̂, y∗, p∗) with q̂1 = (1, 0) and q̂2 = (0, 1)

constitutes a Perfect Bayesian equilibrium. Yet, we will show below in Section 5

that D̂ is not optimal within the class of noisy communication devices. Through

a noisy communication channel the principal may be able to achieve a higher

payoff than through deterministic communication. ¦

4 Optimal Contracts

For a given set of messages M, Lemma 1 allows us to state the principal’s problem

as a programming problem in which the agent’s reporting behaviour has to satisfy

standard incentive compatibility restrictions. Let βi = (βi1, . . . , βih, . . . , βi|M |)
and β = (β1, . . . , βi, . . . , β|T |). Then the principal’s objective is to maximize his

expected payoff

maxx,y,w,β,p V (x, y, w, β, p) ≡ ∑
i,h

γiβih[vi(xh, yh)− wh] (6)

subject to the incentive compatibility constraints

∑
h
βih[ui(xh, yh) + wh] ≥

∑
h
βjh[ui(xh, yh) + wh], (7)

for all ti, tj ∈ T × T ; the agent’s individual rationality constraints

∑
h
βih[ui(xh, yh) + wh] ≥ 0, (8)

for all ti ∈ T ; the no–commitment constraint

yh ∈ argmaxy′
h

∑
i
pihvi(xh, y

′
h); (9)
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and the Bayesian consistency constraint

pih =
βihγi∑
jβjhγj

, (10)

for all mh such that βjhγj > 0 for some tj ∈ T. In what follows, we refer to

(6)–(10) as the principal’s contracting problem for a given message set M. Let

V(M) denote the principal’s expected payoff from a solution to this problem.

There remain two difficulties to derive a tractable procedure for solving the

principal’s problem. First, problem (6)–(10) is stated for a given message set

M. Therefore, a characterization of the optimal message set is required. Second,

it is unclear which of the incentive compatibility and individual rationality con-

straints are actually binding. The first difficulty is a fundamental one, while the

latter is more of a computational nature. It turns out that the two problems are

nevertheless related. By finding an answer to the second problem in this section,

we are able to handle the more fundamental one in the following section.

In order to identify the binding constraints, we proceed by relaxing the prin-

cipal’s contracting problem in two directions. First, we follow the standard ap-

proach and focus on local rather than global constraints. In problems with full

commitment this approach is valid if the agent’s preferences satisfy a natural

single–crossing condition. Effectively, the single–crossing condition reduces the

complexity of the contracting problem because it identifies which of the global

incentive–constraints are binding. It is well–known (e.g. Bester and Strausz

(2001)), however, that this assumption fails to simplify the principal’s problem

under imperfect commitment if he is restricted to a deterministic communication

device. Indeed, with this type of communication and lack of commitment “any

incentive constraint could turn out to be binding at the optimum” (Laffont and

Tirole (1993), p. 377). It is an important insight of our analysis below that this

is no longer the case if the principal is able to employ a noisy communication sys-

tem. In this situation, the standard approach can be used to study contracting

problems for which a single–crossing condition such as Assumption 1 holds.

In addition to considering only local incentive constraints, we relax the prob-

lem in a second direction. Rather than considering message–dependent transfers

w, we introduce type–dependent transfers ω = (ω1, . . . , ωi, . . . , ω|T |). As long

as |T | < |M |, replacing w ∈ IR|M | by ω ∈ IR|T |, reduces the number of vari-

ables in the principal’s problem. Since we can, for a given β, transform any

message–dependent transfer w into a type–dependent transfer ω by specifying

10



ωi =
∑

h βihwh, allowing the principal to use type–dependent transfers relaxes his

contracting problem.

Specifically, we relax the principal’s contracting problem by replacing the

global constraints (7) and (8) in the principal’s contracting problem by downward

incentive and monotonicity constraints. The downward incentive constraints re-

quire that

∑
h
βihui(xh, yh) + ωi ≥

∑
h
βi−1,hui(xh, yh) + ωi−1, (11)

for all ti ∈ T, where ω0 ≡ 0 and β0h ≡ 0 for all mh ∈ M . The monotonicity

constraints are satisfied if

∑
h
βih|ϕ(xh, yh)| ≥

∑
h
βi−1,h|ϕ(xh, yh)| (12)

for all ti ∈ T\{t1}.
In summary, we analyse the following relaxed contracting problem for a given

message set M :

maxx,y,ω,β,p W (x, y, ω, β, p) ≡ ∑
i,h γi[βihvi(xh, yh)− ωi] (13)

subject to (9), (10), (11), and (12).

For a given message set M, let W(M) denote the principal’s expected payoff from

a solution of the relaxed contracting problem (13). The following lemma shows

that the constraints of the relaxed problem are implied by the constraints of the

original problem.

Lemma 2 If there exists a (x, y, w, β, p) satisfying the constraints of the prin-

cipal’s contracting problem, then there exists a (x, y, ω, β, p) satisfying the con-

straints of the relaxed contracting problem. Therefore, W(M) ≥ V(M).

Obviously, the downward incentive constraints are binding in the relaxed con-

tracting problem, because otherwise the principal could increase his payoff by

lowering ω. This in combination with the single–crossing condition on prefer-

ences allows us to show that the local constraints (11) and (12) are sufficient

to guarantee global incentive compatibility and individual rationality. As a re-

sult, we can show that the solution of the principal’s contracting problem can be

derived from solving the relaxed problem:
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Proposition 1 Let (x∗, y∗, ω∗, β∗, p∗) denote a solution to the relaxed contract-

ing problem for a given message set M . Then, for any w∗ such that
∑

h β∗ihw
∗
h =

ω∗i , i = 1, . . . , |T |, the tuple (x∗, y∗, w∗, β∗, p∗) is a solution to the principal’s con-

tracting problem and generates the expected payoff V(M) = W(M).

The proposition shows that the solution of the principal’s contracting problem

can be obtained by solving the relaxed problem. Indeed, the relaxed problem (13)

is much easier to solve than the original problem (6), because the |T |×|T−1|+|T |
constraints in (7) – (8) are replaced by the 2 |T | − 1 constraints in (11) – (12).

In fact, the usual approach to screening problems with full commitment is to

ignore the |T |− 1 monotonicity constraints in (12) and then to check under what

conditions, e.g. on the distribution of the agent’s types, they are automatically

satisfied by the solution. Proposition 1 shows that the same procedure can be

used to solve the principal’s problem in the context of imperfect commitment.

5 Optimal Message Spaces

Although Proposition 1 indicates how to simplify the principal’s contracting prob-

lem for a given message space M , it does not say anything about the optimal

cardinality of the message set itself. To investigate this issue, we say that M∗

is an optimal message set if W(M∗) ≥ W(M ′) for any other message set M ′.
Note that, by Proposition 1, if (x∗, y∗, ω∗, β∗, p∗) solves the relaxed contracting

problem under the message set M∗, then V (x∗, y∗, w∗, β∗, p∗) = V(M∗) = W(M∗)
for any w∗ such that

∑
h β∗ihw

∗
h = ω∗i , i = 1, . . . , |T |. By Lemma 2, therefore, if M∗

is an optimal message set, then V(M∗) = W(M∗) ≥ W(M ′) ≥ V(M ′) for any

other message set M ′. That is, the principal’s expected payoff from solving his

contracting problem with an arbitrary message set M ′ cannot be higher than his

expected payoff from (x∗, y∗, w∗, β∗, p∗) under the message set M∗.

To determine the cardinality of an optimal message set, an insight from the

theory of linear optimization turns out to be useful. To describe a linear program,

let A be an n×m–matrix, c ∈ IRm and b ∈ IRn. For finite n and (possibly)

infinite m the following program is a linear semi-infinite program with m decision

variables x ∈ IRm
+ and n constraints:9

maxx

∑
h
chxh subject to Ax = b, x ≥ 0. (14)

9See Anderson and Nash (1987) for the theory linear of linear programming in infinite–
dimensional spaces.
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By a fundamental result in the theory of linear programming, whenever a finite

linear program has a solution, then one can be found among the extreme points

of the set of feasible solutions in (14). Therefore the program has a basic solution

x∗, i.e. the number of non–zero components of x∗ is no greater than the rank of

A. The following lemma extends this result to linear problems with an infinite

number of decision variables.

Lemma 3 If there exists a solution x∗ ∈ IRm to program (14), then there exists

a solution x′ with at most n non–zero components.

Of course, the relaxed contracting problem (13) is not a linear programming

problem. But, we can apply the above lemma by replacing each vector βh =

(β1h, . . . , β|T |h) by λh βh, with λh ≥ 0, and adding the constraints
∑

h λhβh = 1

for all mh ∈ M. By keeping x, y, β and p fixed, we thus construct a programming

problem that is linear in λ = (λ1, . . . , λ|M |) and ω. Lemma 3 then allows us to

show that there is an upper bound on the number of messages mh for which a

solution of the relaxed problem requires that λh > 0. Since all other messages

with λh = 0 are redundant, we are able to derive restrictions on the cardinality

of the optimal message set.

In what follows, we say that a subset of constraints in the relaxed contracting

problem is not binding at the solution (x∗, y∗, ω∗, β∗, p∗), if (x∗, y∗, ω∗, β∗, p∗) re-

mains a solution for maximizing W also when this subset of constraints is deleted

from the relaxed problem.

Proposition 2 Let (x∗, y∗, ω∗, β∗, p∗) be a solution of the relaxed contracting

problem for the message set M = T. Suppose that the monotonicity constraints

(12) are not binding. Then M = T is an optimal message set.

Under the conditions of Proposition 2, an optimal communication system has

a rather simple structure: The agent reports his type truthfully and the principal

receives a message that indicates a type of the agent. Yet, in general the principal

remains imperfectly informed because the communication device is noisy; it thus

may suggest a type to the principal that differs from the true type, as reported

by the agent.

Effectively, under an optimal contract with M = T the principal offers a

menu (x, y, w) that specifies his decisions (xi, yi) in combination with a transfer

13



wi for each type ti ∈ T of the agent. Yet, the agent cannot select directly

from this menu. Instead, the communication device allows him only to select one

out of |T | probability distributions over the |T | elements in (x, y, w). By incentive

compatibility, the ti–type selects the probability distribution βi so that he receives

(xj, yj, wj) with probability βij.

Proposition 2 reveals how imperfect commitment influences the communica-

tion between the contracting parties: The Revelation Principle for contracting

games with perfect commitment shows that M = T is an optimal message set.

Further, under perfect commitment it is always optimal to set βi i = 1, i.e. the

agent’s honest report about his type is transmitted without distortions to the

principal. Typically, this form of ‘direct’ communication is no longer optimal

when the principal cannot contractually commit himself to all of his actions. In

this situation, he may prefer to become imprecisely informed by setting βi i < 1.

There remains the obvious question of what happens when some of the mono-

tonicity constraints are binding. In this case the procedure outlined below Lemma

3 is still applicable. Yet, binding monotonicity constraints cannot simply be

deleted from the relaxed problem. Because the number of binding constraints

increases, also the cardinality of the optimal message set increases.

Proposition 3 Let (x∗, y∗, ω∗, β∗, p∗) be a solution of the relaxed contracting

problem for the message set M = T ∪ {1, . . . , K}. If for this solution not more

than K of the monotonicity constraints are binding, then M = T ∪ {1, . . . , K} is

an optimal message set.

Hence, with binding monotonicity we lose the intuitive property that the

cardinality of the optimal message space equals the cardinality of the type space

and can therefore be interpreted as the type space. Yet, since the number of

binding monotonicity constraints is at most |T | − 1 the upper bound on the

cardinality of an optimal message set is 2|T | − 1.

The proposition suggests the following algorithm for solving contracting prob-

lems with imperfect commitment: One starts with the message set M = T and

solves the relaxed problem ignoring the monotonicity constraints. If the solution

automatically satisfies these constraints, one has found the optimal message set.

If not, one repeatedly increases the cardinality of the message set until one finds

a solution for which the number of binding monotonicity constraints matches the

number of additional messages.
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We close this section by applying this procedure to our example:

Example: We will show that M = T is an optimal message set. To simplify

notation, let β1 = (a, 1 − a) and β2 = (1 − b, b). Thus if the agent selects the

report t1, the principal receives the message t1 with probability a and the message

t2 with probability 1− a. Similarly, if the agent selects t2, the principal receives

the message t2 with probability b and the message t1 with probability 1− b. We

first solve the relaxed problem ignoring the monotonicity constraint. Later on we

verify that this constraint is automatically satisfied.

The (binding) downward incentive constraints are equivalent to

− b y2
2/6− (1− b) y2

1/6 + ω2 = −a y2
1/6− (1− a)y2

2/6 + ω1, (15)

−a y2
1/5− (1− a)y2

2/5 + ω1 = 0.

Solving for (ω1, ω2) yields

ω1 = [a (y2
1 − y2

2) + y2
2]/5, ω2 = [y2

1(5 + a− 5b) + y2
2(1− a + 5b)]/30. (16)

When the principal receives the message ti, he believes that the agent’s type is

t1 with probability p1i and type t2 with probability p2i = 1−p1i. According to (9)

he selects yi = 20/[1+3p1i]. Since p11 = a/(1−b+a) and p12 = (1−a)/(1−a+b),

we have that

y1 = 20(a− b + 1)/(4a− b + 1), y2 = 20(a− b− 1)/(4a− b− 4). (17)

The principal’s expected payoff is

W =
[
a(10y1 − y2

1) + (1− a)(10y2 − y2
2)− ω1

]
/2 + (18)

[
b(10y2 − y2

2/4) + (1− b)(10y1 − y2
1/4)− ω2

]
/2.

Substitution of (16) and (17) into W and maximizing with respect to a and b

yields a∗ = 137/172 and b∗ = 1. Hence, β∗1 = (137/172, 35/172) and β∗2 = (0, 1).

The optimal values for y∗, ω∗ and p∗ are:

y∗1 = 5, y∗2 =
345

26
, ω∗1 =

30145

2704
, ω∗2 =

506245

16224
, p∗11 = 1, p∗12 =

35

207
. (19)

As y∗1 < y∗2, the monotonicity constraint (12) turns out to be not binding. Thus

M = T is indeed an optimal message set.
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Solving
∑

h β∗ihwh = ω∗i , i = 1, 2, yields

w∗
1 = 97745/16224, w∗

2 = 506245/16224. (20)

By Proposition 1 (x∗, y∗, w∗, β∗, p∗) is a solution to the principal’s contracting

problem; his expected payoff from this solution is W ∗ = 71645/2496. By Propo-

sition 2 this is the highest possible expected payoff that he could achieve by any

arbitrary communication device. Also, as we have pointed out at the end of Sec-

tion 3, by using a deterministic device the principal could get at most a payoff of

55/2, which is less than W ∗. This shows that in our example face–to–face com-

munication is dominated by noisy communication. ¦

The example illustrates some important differences between direct and noisy

communication. With direct communication it is unclear which of the incentive

constraints are binding; in the example this happens to be the incentive constraint

of the inefficient type. With noisy communication, however, the efficient type’s

incentive constraint is binding. As we have shown above, this feature is a general

characteristic of optimal general communication devices.10

Also, in the example the principal obtains a higher payoff through noisy com-

munication than through direct communication. This can be explained by the

importance of stochastic messages in contracting problems with imperfect com-

mitment. With direct communication, such stochastic messages can only be gen-

erated if the agent himself mixes between the available reports. This requires him

to be indifferent between the outcomes of all reports that he sends with positive

probability. In contrast, when the principal uses noisy communication, the agent

only has to prefer the overall mixing probabilities associated with his report to

the probabilities associated with the other reports. That is, the agent’s incentive

constraint is only expressed as a weighted average over the induced outcomes

rather than for each individual outcome. Consequently, a noisy communication

device has more degrees of freedom for generating stochastic messages.

6 Concluding Remarks

This paper presents a framework to study principal–agent problems with adverse

selection and limited commitment. It demonstrates that by allowing for gen-

10Mitusch and Stausz (2005) obtain a similar qualitative difference in a specific game of cheap
talk without transfers.
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eral communication devices one can drastically simplify the derivation of optimal

contracts. Instead, the literature on such problems has limited itself to direct,

one–shot communication between the contracting parties. This not only restricts

the parties’ communication capabilities, but also makes it difficult to identify the

binding incentive constraints of the contracting problem. In contrast, we allow

the contracting parties to employ a general communication device. This together

with a standard single–crossing assumption enables us to characterize the struc-

ture of optimal contracts: In the same way as in screening problems with full

commitment, only the local downward incentive constraints turn out to be bind-

ing. Further, we derive an upper bound on the cardinality of message sets under

an optimal communication device. These insights yield a tractable procedure for

solving screening problems with imperfect commitment.
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7 Appendix

Proof of Lemma 1: Let (q, y, p) be a Perfect Bayesian equilibrium under the

communication system D = (R,M,B), i.e. (q, y, p) satisfies conditions (3)–(5).

Define the communication system D̂ = (R̂, M̂ , B̂) by R̂ = T, M̂ = M, and

β̂ih =
∑

k qik βkh for all (ti, mh) ∈ T × M. Further let q̂ satisfy q̂ii = 1 for all

ti ∈ T, and q̂ij = 0 whenever ti 6= tj.

Then
∑

k q̂ik β̂kh = β̂ih =
∑

k qik βkh, which proves the second part of Lemma 1.

This immediately implies that (q̂, y, p) satisfies conditions (4) and (5) of a Perfect

Bayesian equilibrium under the communication system D̂. It thus remains to

show that (q̂, y, p) satisfies also condition (3). Suppose the contrary, i.e. there

exists a q′ such that

∑
k,h

q̂ik β̂kh [ui(xh, yh) + wh] =
∑

h
β̂ih [ui(xh, yh) + wh] (21)

<
∑

k,h
q′ik β̂kh [ui(xh, yh) + wh] ,

for some q′i and some ti ∈ T. This implies that there is a tj ∈ T such that

∑
h
β̂ih [ui(xh, yh) + wh] <

∑
h
β̂jh [ui(xh, yh) + wh] . (22)

Therefore, by definition of β̂ih and β̂jh,

∑
k,h

qikβkh [ui(xh, yh) + wh] <
∑

k,h
qjkβkh [ui(xh, yh) + wh] . (23)

By this inequality, qi fails to satisfy (3) and so it is not an optimal reporting

strategy for type ti under the communication system D. Therefore, (q, y, p) is not

a Perfect Bayesian equilibrium under the communication system D, a contradic-

tion. Q.E.D.

Proof of Lemma 2: First, we show that the incentive constraints in (7) imply

the monotonicity constraints in (12). By Assumption 1, the incentive constraints

in (7) imply that

∑
h
[βih − βi−1,h][zi ϕ(xh, yh) + ψ(xh, yh) + wh] ≥ 0, (24)

∑
h
[βi−1,h − βih][zi−1 ϕ(xh, yh) + ψ(xh, yh) + wh] ≥ 0,

for all ti ∈ T\{t1}. Adding these inequalities yields

∑
h
[βih − βi−1,h][zi − zi−1]ϕ(xh, yh) ≥ 0. (25)
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Since Assumption 1 implies (zi − zi−1)ϕ(x, y) > 0, this shows that (7) implies

(12). By defining ωi =
∑

h βihwh, it immediately follows that (7) implies (11).

This confirms the first part of the lemma.

To prove the second statement, let (x∗, y∗, w∗, β∗, p∗) be a solution to the

principal’s contracting problem leading to the payoff V(M). Define ω∗i =∑
h β∗ihw

∗
h. Since (x∗, y∗, w∗, β∗, p∗) satisfies the constraints (7) and (8), it follows

by the argument above that (x∗, y∗, ω∗, β, p∗) satisfies (11) and (12). Therefore,

(x∗, y∗, ω∗, β∗, p∗) satisfies all the constraints in (13) and W (x∗, y∗, ω∗, β∗, p∗) =

V (x∗, y∗, w∗, β∗, p∗) = V(M). Therefore, the principal’s expected payoff from the

solution of the relaxed problem cannot be less than V(M). Q.E.D.

Proof of Proposition 1: Note that for (x∗, y∗, ω∗, β∗, p∗) all the constraints in

(11) are binding. Indeed, if the inequality would hold for the downward constraint

of some type ti, then the principal could increase his expected payoff by lowering

ωi without violating any other constraint in (11). Thus for any w∗ such that∑
h β∗ihw

∗
h = ω∗i , i = 1, . . . , |T |, we have

∑
h
β∗ih[ui(x

∗
h, y

∗
h) + w∗

h] =
∑

h
β∗i−1,h[ui(x

∗
h, y

∗
h) + w∗

h], (26)

for all ti ∈ T.

It remains to show that the combination (x∗, y∗, w∗, β∗, p∗) satisfies the in-

centive compatibility conditions (7) and the individual rationality conditions (8).

Define

θi ≡
∑

h
β∗ihϕ(x∗h, y

∗
h), µi ≡

∑
h
β∗ih[ψ(x∗h, y

∗
h) + w∗

h], (27)

so that we may rewrite (26) as

µi = µi−1 − zi (θi − θi−1), (28)

for all ti ∈ T\{t1}. Applying (28) iteratively yields

µi = µ1 −
∑i

`=2
z` (θ` − θ`−1). (29)

Thus, for all (ti, tj) ∈ T × T,

(ziθi + µi) − (ziθj + µj) = zi(θi − θj) (30)

+
∑j

`=2
z` (θ` − θ`−1)−

∑i

`=2
z` (θ` − θ`−1).

19



If i < j then

∑j

`=2
z` (θ` − θ`−1)−

∑i

`=2
z` (θ` − θ`−1) =

∑j

`=i+1
z` (θ` − θ`−1) (31)

=
∑j

`=i+1
(z` − zi) (θ` − θ`−1) + zi(θj − θi) ≥ zi(θj − θi),

where the inequality follows because the monotonicity condition (12) and As-

sumption 1 imply Sign(θ` − θ`−1) = Sign(ϕ) = Sign(zl − zi) for l > i so that

(z` − zi) (θ` − θ`−1) ≥ 0.

If i > j, then

∑j

`=2
z` (θ` − θ`−1)−

∑i

`=2
z` (θ` − θ`−1) = −∑i

`=j+1
z` (θ` − θ`−1) (32)

=
∑i

`=j+1
(zi − z`) (θ` − θ`−1) + zi(θj − θi) ≥ zi(θj − θi),

because (zi − z`) (θ` − θ`−1) ≥ 0 as i > `.

By (31) and (32), we obtain that (30) is non–negative so that ziθi + µi ≥
ziθj + µj for all (ti, tj) ∈ T × T. This shows that (x∗, y∗, w∗, β∗, p∗) satisfies the

incentive compatibility conditions in (7).

To show that (x∗, y∗, w∗, β∗, p∗) also satisfies the individual rationality condi-

tions (8), note that the equality for t1 in (26) implies

∑
h
β∗1h[u1(x

∗
h, y

∗
h) + w∗

h] = 0. (33)

As we have shown that (x∗, y∗, w∗, β∗, p∗) satisfies the incentive compatibility

conditions (7), we have for all ti ∈ T

∑
h
β∗ih[ui(x

∗
h, y

∗
h) + w∗

h] ≥
∑

h
β∗1h[ui(x

∗
h, y

∗
h) + w∗

h] (34)

≥ ∑
h
β∗1h[u1(x

∗
h, y

∗
h) + w∗

h] = 0,

where the second inequality follows from the monotonicity condition (12). Thus

also the individual rationality conditions in (8) are satisfied.

We conclude that (x∗, y∗, w∗, β∗, p∗) satisfies all constraints (7)-(10) of the

principal’s problem. It yields the principal the payoff V (x∗, y∗, w∗, β∗, p∗) =

W (x∗, y∗, ω∗, β∗, p∗) = W(M). By Lemma 2 the original contracting problem

cannot yield more than W(M) and so we have V(M) = W(M). Q.E.D.

Proof of Lemma 3: If x∗ has finitely many non-zero entries, then Theorem

2.5 of Anderson and Nash (1987, p.23) shows that there exists a basic optimal
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solution to program (14). Since Rank(A) ≤ n, it follows that a basic solution to

(14) has at most n non-zero entries. Now suppose x∗ has infinitely many non-

zero entries. Following the approach of the proof of Theorem 4.8 of Anderson

and Nash (1987, p.76), we show that there exists a solution x̄ with at most n + 2

non-zero entries such that we may apply Theorem 2.5 of Anderson and Nash

(1987, p.23).

Let V ∗ ≡ ∑
h chx

∗
h be the value of program (14). Extend the matrix A by

adding the row vector c = (c1, c2, . . .) to Â. That is, Â ∈ IR(n+1)×m consists of

the column vectors âi = (a1i, a2i, . . . , ani, ci). Consequently, any x ≥ 0 which is a

solution to

Âx = b̂ ≡ (b, V ∗) (35)

is also a solution to (14), as it satisfies Ax = b and has the value c.x = V ∗.
In particular, x∗ is a solution to (35). Define the cone C = {λâi|λ ≥ 0, i =

1, 2, . . . , } ⊂ IRn+1 generated by the column vectors (â1, â2, . . .) in Â. Since

b̂ = lim
k→∞

∑k

i=1

(
1

2

)i

2iâix
∗
i , (36)

b̂ is an infinite mixture of points in C and, because C lies in the finite Euclidean

space IRn+1, it follows that b̂ lies in the convex hull of C (Rubin and Wesler

(1958)). Hence, Caratheodory’s theorem (Rockafellar (1970), Theorem 17.1, p.

155) implies that b̂ can be written as a convex combination of k ≤ n+2 elements

(ξ1, . . . , ξk) in C. That is, there exists (µ1, . . . , µk) with
∑

i µi = 1 and µi ≥ 0

such that

b̂ =
∑k

i=1
µiξi. (37)

Since for each ξj ∈ C there exists an i(j) such that ξj can be written as λj âi(j),

we may rewrite b̂ as

b̂ =
∑k

j=1
µjξj =

∑k

j=1
µjλj âi(j). (38)

Now let J(i) ≡ {j|i(j) = i} and define x̄i ≡ ∑
J(i)µjλj. It follows that x̄ has at

most k ≤ n + 2 non-zero entries and satisfies (35). Q.E.D.

Proof of Proposition 2: Let (x∗, y∗, ω∗, β∗, p∗) be a solution of the re-

laxed contracting problem for the message set M = T with value W ∗ =
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W (x∗, y∗, ω∗, β∗, p∗) = W(T ). If the monotonicity constraints (12) are not bind-

ing then (x∗, y∗, ω∗, β∗, p∗) solves the following problem

maxx,y,ω,β,p W (x, y, ω, β, p) (39)

subject to (9), (10) and

∑
h
βihui(xh, yh) + ωi =

∑
h
βi−1,hui(xh, yh) + ωi−1 (40)

for all ti ∈ T .

Now suppose the message set T is not optimal. Obviously, the principal cannot

get a higher payoff by using a message set M̄ with |M̄ | < |T |. Accordingly, there

must exist a message set M̄ with |M̄ | > |T | such that W(M̄) > W(T ) = W ∗.
We will show that this yields the contradiction that (x∗, y∗, ω∗, β∗, p∗) does not

solve program (39) for the message set M = T .

Let the combination (x̄, ȳ, ω̄, β̄, p̄) represent a solution of the relaxed contract-

ing problem given the message set M̄ , i.e. W (x̄, ȳ, ω̄, β̄, p̄) = W(M̄). Since all

downward incentive constraints (11) are binding, ω̄ together with λ1 = . . . =

λ|M̄ | = 1 solves the program

maxλ,ω

∑
i,h

γi[λhβ̄ihvi(x̄h, ȳh)− ωi] (41)

subject to

∑
h
λhβ̄ihui(x̄h, ȳh) + ωi =

∑
h
λhβ̄i−1,hui(x̄h, ȳh) + ωi−1, (42)

∑
h
λhβ̄ih = 1, (43)

for all ti ∈ T ; and λh ≥ 0 for all mh ∈ M̄ . Solving (42) for ω yields

ωi(λ) ≡ −∑i

j=1

∑
h
λh(β̄jh − β̄j−1,h)uj(x̄h, ȳh) (44)

for all ti ∈ T . By substitution we may therefore rewrite problem (41)–(43) as

maxλ W̄ (λ) ≡ ∑
i
γi

∑
h

[
λhβ̄ihvi(x̄h, ȳh)− ωi(λ)

]
(45)

subject to

∑
h
λhβ̄ih = 1 for all ti ∈ T ; (46)

and λh ≥ 0 for all mh ∈ M̄ .
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The objective function and constraints of problem (45)–(46) are linear in

λ. According to Lemma 3 it has therefore a solution λ∗ with k ≤ |T | strictly

positive entries λ∗h > 0. Since λ1 = . . . = λ|M̄ | = 1 is also a solution, W̄ (λ∗) =

W̄ (1, . . . , 1) = W(M̄).

Now consider the combination (x̄, ȳ, ω(λ∗), β(λ∗), p̄) with βih(λ
∗) ≡ λ∗hβ̄ih. By

taking from (x̄, ȳ, ω(λ∗), β(λ∗), p̄) those k entries for which λ∗h > 0 and |T |−k en-

tries for which λ∗h = 0, we obtain a combination (x′, y′, ω′, β′, p′) for a message set

M ′ with |M ′| = |T |. It follows that W (x′, y′, ω′, β′, p′) = W (x̄, ȳ, ω(λ∗), β(λ∗), p̄)

= W̄ (λ∗) = W(M̄).

By construction, (x′, y′, ω′, β′, p′) satisfies (40) and therefore also (11). It also

satisfies the constraints (10), because

p′ih =
β′ihγi∑
j β′jhγj

=
λ∗hβ̄ihγi∑
j λ∗hβ̄jhγj

=
β̄ihγi∑
j β̄jhγj

= p̄ih, (47)

for all mh such that β′jhγj > 0 for some tj ∈ T. From this property of the beliefs p′

it follows immediately that also (9) holds. In summary, (x′, y′, ω′, β′, p′) satisfies

all constraints of program (39). But, as W (x′, y′, ω′, β′, p′) > W (x∗, y∗, ω∗, β∗, p∗),
we obtain the contradiction that (x∗, y∗, ω∗, β∗, p∗) cannot solve program (39).

Hence, there cannot exist a message set M̄ such that W(M̄) > W(T ). Q.E.D.

Proof of Proposition 3: Analogous to the proof of Proposition 2 with the

exception that program (41) now has in addition the K monotonicity constraints.

Hence, program (45) has |T | + K constraints so that according to Lemma 3, it

has a solution λ∗ with at most |T |+ K strictly positive entries. Q.E.D.
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