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Abstract

I study the optimal regulation of a �rm producing two goods. The �rm has private in-

formation about its cost of producing either of the goods. I explore the ways in which the

optimal allocation di¤ers from its one dimensional counterpart. With binding constraints

in both dimensions, the allocation involves distortions for the most e¢ cient producers and

features overproduction for some less e¢ cient types.

JEL: D82, L21, Asymmetric Information, Multi-dimensional Screening, Regulation.

1 Introduction

When duplication of �xed costs is wasteful, a service is e¢ ciently provided by a natural monopoly.

To keep the service provider from abusing its monopoly power, the pricing of the �rm is regulated.

If the regulator knew what the �rm knows, then optimal regulation would simply entail pricing at

marginal costs and reimbursing the �rm for the losses it makes on a lump-sum basis. However,

typically �rms are better informed about cost and/or demand conditions than the regulator is.

This problem was �rst addressed by Loeb and Magat [1979] and studied rigourously using the

tools of mechanism design by Baron and Myerson [1982] and Sappington [1983]. If cost conditions
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are known to the �rm but not to the regulator, then marginal cost pricing is no longer optimal.

Marginal cost pricing gives �rms with relatively low marginal costs incentives to exaggerate their

costs in order to get larger subsidies. To make such exaggeration unattractive, prices are distorted

upwards for all but the most e¢ cient �rms.

Much of our theoretical understanding of the regulation problem is built around one-dimensional

models where the �rm�s informational advantage is captured by the realization of either a cost or

a demand shifter. This paper wishes to shed light on the the optimal pricing of a �rm that knows

several parameters that escape the regulator. This is a natural and important problem. Firms

typically produce multiple goods; e.g. a railway company can transport cargo and passengers, a

telephone company can use its wires to transmit voice and data, water utilities deliver fresh water

and provide sewerage services. Moreover, serving di¤erent customer groups that are di¤erentiated

either by usertype (household versus non-household) or geographical location may be viewed as

supplying di¤erent goods. It is analytically convenient but otherwise rather special to assume that

the �rm�s cost conditions along the various dimensions of production are perfectly correlated -

which is essentially what we do if we assume that the cost shifter is a one-dimensional parameter.

The minimal complexity needed to address this question in some generality is a model featuring

two dimensions of production and two dimensions of asymmetric information. Moreover, the nat-

ural extension of one-dimensional models with a continuum of types as, e.g., in Baron and Myerson

[1982] is to assume that types are drawn from a rectangle. Rochet and Choné [1998] analyze such

a model and show that two properties are robust in the multidimensional problem. Firstly, con-

�rming Armstrong [1996], a fraction of types is excluded at the optimum. Secondly, the optimal

contractual arrangement displays bunching at the low end of the type support. Unfortunately,

these two properties make the problem so hard to analyze that it basically becomes impossible to

gain any further insights. The known alternative models that are more accessible, surveyed below,

are based on reducing the dimension of the design problem back to one dimension. This paper

proposes an alternative to this approach where the design problem remains two-dimensional and

yet the problem remains tractable. Essentially, the idea is to identify assumptions that make the

second best amount of production in one dimension easy to characterize. Once this part of the

allocation is known, the solution to the remainder of the allocation problem can be characterized

in closed form as well.

Armstrong and Rochet [1999] solve the regulation problem in a two-by-two model, that is, in

a model of a �rm producing two goods and knowing the realization of two cost parameters on
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binary supports. In the present paper, I extend their analysis to the case where one parameter is

drawn from a continuum while the other parameter still has a binary support. The regulated �rm

produces two goods - say, fresh water and severage services - and privately observes two parameters

shifting its cost of production. The �rst parameter, drawn from a continuum, a¤ects the marginal

cost of producing good one - fresh water - only. The second parameter, drawn from a binary

distribution, a¤ects the marginal cost of producing good two - the severage service - only. In

addition, the marginal costs of producing each of the goods are allowed to depend on the amount

of the other good. The crucial assumption that makes the model tractable is that the di¤erence

between the realizations of the binary parameter are relatively large. Under this assumption, the

second best allocation features a good two allocation that depends only on the realization of the

binary parameter. As a result, the population of �rms is essentially split into two groups according

to the amount of good two they produce. Within these groups, �rms face the same incentives as

�rms in the Baron Myerson [1982] model do. However, in addition, �rms can also mimic �rms in

the other group by producing a di¤erent amount of good two. Consequently, the pricing of good

one needs to be adjusted so as to keep �rms from engaging in such behaviour.

The model is designed to understand one of the various e¤ects in the multidimensional problem

in detail. In particular, the model sheds light on how the additional information through the

observed amount of good two feeds back into the pricing of good one. The model is both stylized

and rich. It is stylized in that I obtain a complete solution as a function of the model�s primitives.

It is rich because it allows for a large but manageable variety of optimal allocations and o¤ers

clearcut predictions as to what primitives give rise to which allocation.

The optimal allocation depends crucially on two factors. Firstly, the nature of interaction

between the two goods in the social surplus function and secondly, the statistical dependence

between the cost parameters. Each of these factors can make it unattractive for a �rm to signal its

binary type through the amount of good two it produces. For concreteness, suppose that the cost

parameters are statistically independent but assume that the goods are net substitutes in the sense

of La¤ont and Tirole [1993]. Then, consuming a larger amount of good two makes it desirable to

consume a smaller amount of good one. Since the �rm�s rents arising from good one production

are related to the quantity of good one the �rm can sell, all else equal, �rms �nd it particularly

attractive to produce the smaller amount of good two. Statistical dependence can have a similar

e¤ect: in equilibrium, the amount of good two indicates the �rm�s cost of producing good two

which in turn provides information about its cost of producing good one. If costs are positively
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correlated, then the regulator becomes relatively more concerned with extracting rents from the

�rm that produces the larger amount of good two and hence sets prices such that this �rm produces

a smaller amount of good one. In both cases, the �rms that are e¢ cient at producing good two

need to be given an explicit incentive to produce the large amount of good two and the optimal

allocation re�ects this constraint being binding.

The optimal allocation is strikingly di¤erent in the case of surplus interactions and the case of

purely statistical interaction. In the case of pure surplus interactions it is optimal to set marginal

prices for good one below marginal costs for all but the most ine¢ cient �rm supplying a large

amount of good two. In contrast, good one prices for �rms producing the smaller amount of good

two are set above marginal cost, over and above the level that would be optimal if only one quantity

of good two could be produced to begin with. Moreover, I provide conditions making it optimal to

leave unusually large rents to all �rms that produce the larger amount of good two, including the

most ine¢ cient producer within that group. Finally, this allocation features complete separation

between all types.

In the case of purely statistical interaction, it is optimal to set the marginal price of good one

independently of what amount of good two is produced; in other words, in this case the good one

allocation features bunching in the parameter relating to production costs of good two. Moreover,

it is never optimal to leave any rents to the ine¢ cient �rms in both groups.

Among the qualitative features of the solution, presumably the most interesting �nding is the

pricing below marginal costs. As documented by Sawkins and Reid [2007], there is evidence of

some prices below marginal cost in the Scottish Water industry, so this does not seem to be a mere

theoretical curiosity but rather something worth understanding. There are various explanations

for such observations. It is well known that a multiproduct monopolist may �nd it optimal to set

some prices below marginal costs (see Tirole [1988]) in order to stimulate the demand for some

of its other products. This exlanation crucially relies on demand complementarities. The present

approach o¤ers an explanation that relies exclusively on incentive concerns, so the model can

rationalize prices below marginal costs even in the absence of demand complementarities.

Results closest in the literature are Armstrong and Rochet [1999], Lewis and Sappington [1988]

and Armstrong [1999]. All three of these papers discuss prices below marginal costs. In particular,

Armstrong and Rochet [1999] show that prices below marginal costs arise at the optimum under

particular conditions. As explained above, the present model enriches the one by Armstrong and

Rochet [1999] towards a more general yet still tractable version of the two-dimensional problem.
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Hence, by intention, the main contribution of this paper is to identify the e¤ects that survive in the

richer context. Since the solution techniques remain manageable, there are reasons to hope that

the present results can be extended to even richer models, bridging the gap between the two-by-two

and the continuum-by-continuum model even further.1

Lewis and Sappington [1988] and Armstrong [1999] also note the possibility of prices below

marginal costs, even though in quite di¤erent models. In their approaches, there are two parameters

of private information - marginal costs and the level of demand - but the regulator has only one

instrument, the marginal price, to screen �rms. As a result, the dimensionality of the design

problem is reduced to one, making the problem amenable to techniques developed by La¤ont,

Maskin and Rochet [1987] and McAfee and McMillan [1988]. While there is bunching by design

in these models, there are as many parameters of private information as screening instruments in

the present paper and so the design problem remains two-dimensional2 . While both Lewis and

Sappington [1988] and Armstrong [1999] note the possibility that prices can be set below marginal

costs, Armstrong [1999] proves the optimality of exclusion in the Lewis and Sappington model,

due to, essentially the same reasons as in Armstrong [1996]. One reason why the present approach

remains tractable is that exclusion, as in Armstrong [1996, 1999], does not occur here. As a result,

I am able to turn the possibility result into a de�nite taxonomy of model primitives3 , and delineate

the precise circumstances which feature marginal prices below marginal costs. It is left for future

work - some of which is described in the �nal section - to see whether the qualitative features of

the optimal allocation survive in even richer contexts.4

The paper is organized as follows. In Section two I lay out the model and explain the regu-

1Formally, the reason the present model remains manageable is that double-deviations - simultaneous lies in both

dimensions - can be handled. While such double-deviations can be analyzed explicitly in the two-by-two model, they

are the reason why the multidimensional problem with a richer type space is hardly tractable. Another approach

that overcomes the double-deviation issue di¤erently is Kleven et al. (2009) in the context of the taxation of couples.

The optimal mechanism in the present context is very di¤erent from theirs. See also Beaudry et al. [2009] for yet

a di¤erent approach where double-deviations are not optimal. In contrast to Beaudry et al. [2009] the present

approach makes no restrictions on the available deviation strategies.
2See also Rochet and Stole [2003] for an overview of di¤erent approaches to multidimensional screening problems

in the literature.
3Formally, exclusion does not occur since the type space in the current model is binary�continnum, while

Armstrong [1996, 1999] assumes a continuum�continuum type space.
4A main di¢ culty with richer models is the techniques required to solve the models; see Rochet and Stole [2003]

for an overview. However, a further di¢ culty arises from the ignorance of what one is actually looking for. Since it

usually becomes much easier to prove the optimality of an allocation once it is known how it looks like, I hope the

current results prove to be a useful guide in the search of solutions to richer models.
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lator�s allocation choice and its solution in the �rst-best. In Section three, I describe the set of

implementable allocations and derive the regulator�s control problem. In Section four, I lay out

a benchmark case where constraints are binding in only one dimension. In Section �ve, I treat

the multidimensional problem and discuss how binding constraints relate to bunching. Section six

contains closed form solutions for the case of a fully separating solution (with binding constraints

in both dimensions) and the case of full separation in one dimension and complete bunching along

the other dimension. Section seven discusses extensions and o¤ers some conclusions. Long proofs

have been relegated to the appendix.

2 The model and the main assumptions

There are two goods. Consumers�valuations for these two goods are given by the function V (x; q) ;

where x is the quantity of the �rst good and q the quantity of the second good. Consumers�

valuation for good one is independent5 of the valuation for good two, so V (x; q) = V 1 (x)+V 2 (q).

Good one is perfectly divisible and consumers decide how much to consume. Letting P 1 (x) denote

the inverse demand function for good one, I have

V 1 (x) �
xZ
0

P 1 (z) dz:

I assume that the inverse demand function is di¤erentiable and decreasing in x; so the valuation is

twice di¤erentiable and concave. Obviously, the valuation is increasing in x: V 1x (0) is su¢ ciently

large to make all solutions interior: Good two can be produced in discrete quantities, or more

generally variants, q 2 fq0 � 0; q1; q2; � � � ; qng ; where qi > qi�1 for i = 1; : : : ; n: V 2 (q) is increasing

with q; V 2 (0) = 0, and V 2(qi)�V 2(qi�1)
qi�qi�1 is decreasing in i: Given the discreteness of the good two

allocation problem, there is a range of prices that induces consumers to consume qi units of good

two, if that is the desired amount. Assuming q0 = 0 is a normalization that has two interpretations.

Variant q0 can be understood as shutting down the second dimension, that is, consuming zero units

of that good; or it can be understood as a baseline version whose costs are known to the regulator.

The normalization is not used until section 4. It is not essential that the variants are discrete.

What matters is that there is a maximum quantity qn:

The goods are produced by a monopoly �rm subject to price regulation. The �rm�s cost of

5Assuming independent demands shifts all the interactions into the �rm�s cost function, which allows me to

clearly trace back reasons for binding constraints. The assumption can be relaxed.
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producing the goods in quantities x and q is

C (x; q; �; �) = K + x� + q� + �xq;

where K > 0 and � are constants known to both regulator and �rm, and x and q are veri�able so

that contracts can be written on these variables; � and � are parameters that are known to the

�rm but not to the regulator. � is a parameter that captures the sign and strength of interactions

between good one and good two in the �rm�s cost function.

The regulator knows only the joint distribution of the variables � and �;.these parameters

are distributed on a product set � � H with probability density function f (�; �) > 0 for all

�; �: The set � is taken as the interval
�
�; �
�
, where � > � > 0: The set H is taken as

�
�; �
	

where � > � > 0: The marginal probability that � = � is equal to �: Given the full support

assumption, the conditional distribution of � given � has full support. The density and cdf of this

distribution are denoted f (� j� ) and F (� j� ) ; respectively. Let E denote the expectation operator

and let f (�) � EH [f (� j� )] and F (�) denote the density and the cdf of the marginal distribution,

respectively.

The cost function satis�es the standard Spence-Mirrlees conditions in x,� and q; �, respectively.

The allocation problem is rich and simple at the same time. It is simple in the sense that the good

two allocation is discrete; this makes the problem solvable. It is rich in the sense that the solution

to the problem di¤ers substantially from the one where good two is absent.

The �rm is subject to price regulation. However, it is equivalent and notationally much more

convenient to analyze the model directly in terms of quantity regulation (that is, as a procurement

problem). If the �rm produces quantities x and q then it receives a payment t and its pro�t is

t� C (x; q; �; �) :

The properties of the optimal incentive scheme can be traced back into the context of price regu-

lation using the well known fact that

V 1x (x) = P
1 (x) :

De�ne the sum of consumer and producer surplus as

S (x; q; �; �) � V 1 (x) + V 2 (q)� C (x; q; �; �) :

Notice that the surplus function is concave in x; moreover, Sx (x; q; �; �) = � (� + �q) is non-

increasing in q for � � 0 and increasing in q for � < 0: In the former case x and q are net
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substitutes in the surplus function while they are net complements in the latter case6 .

2.1 The regulator�s problem

By the revelation principle, I can think of the regulator�s problem in term�s of a direct mechanism,

which is a triple of functions fq (�; �) ; x (�; �) ; t (�; �)g for all (�; �) 2 ��H; that satisfy incentive

compatibility constraints. The regulator maximizes a weighted sum of net consumer surplus and

producer surplus. If a �rm announces parameters �̂ and �̂; then its pro�ts are given by

�
�
�̂; �; �̂; �

�
� t
�
�̂; �̂
�
� C

�
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �; �

�
:

Under a truthful mechanism, the weighted joint surplus for a given pair (�; �) is equal to

W (�; �) � V 1 (x (�; �)) + V 2 (q (�; �))� t (�; �) + ��(�; �; �; �)

where � 2 (0; 1) : Since � is kept constant throughout the paper, I suppress the dependence of the

welfare function on � in what follows: I let � and H denote the random variables with typical

realizations � and �; respectively, and let E�H denote the expectation operator taken over the

random variables � and H: The regulator solves the following problem, which I denote as problem

P:

max
x(�;�);q(�;�);t(�;�)

E�HW (�; �) (1)

s.t. for all �; � and all �̂; �̂

�(�; �; �; �) � �
�
�̂; �; �̂; �

�
; (2)

and for all �; �

�(�; �; �; �) � 0; (3)

(2) is the incentive compatibility condition, requiring that a �rm of type �; � must have no incentive

to mimic any other type of �rm;(3) requires that each �rm in equilibrium obtain a non-negative

pro�t.

2.2 The �rst-best

Since � < 1; the regulator allocates all surplus to the consumers in the �rst-best allocation; the

participation constraint is binding for each type, �(�; �; �; �) = 0; so

t (�; �) = C (x (�; �) ; q (�; �) ; �; �) :

6See, e.g., La¤ont and Tirole [1993].
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Substituting for t (�; �) into the regulator�s objective function, I obtain

max
x(�;�);q(�;�)

E�H
�
V 1 (x (�; �)) + V 2 (q (�; �))� C (x (�; �) ; q (�; �) ; �; �)

�
:

The �rst-best optimal policy for good one, xfb (�; �) ; satis�es equality of marginal bene�ts and

costs, so

V 1x
�
xfb (�; �)

�
� Cx

�
xfb (�; �) ; qfb (�; �) ; �; �

�
= 0:

I assume throughout the paper that � � � is su¢ ciently large and � su¢ ciently small in the sense

of the following assumption:

Assumption 1: For all i and all x in the relevant range � + �x � V 2(qi)�V 2(qi�1)
qi�qi�1 � � + �x:

Assumption 1 implies that, regardless of the quantity x; for a �rm with a high cost parameter

�; the increase in costs due to an increase in qi outweighs the increase in surplus, while for a �rm

with cost parameter �, the reverse is true. Hence, the �rst-best policy entails qfb (�; �) = q0 for all

� and qfb
�
�; �
�
= qn:

3 Statement of the problem

3.1 Implementable allocations

To solve the regulator�s problem I begin by bringing the incentive and participation constraints,

(2) and (3) ; into a more tractable form. Obviously, the set of implementable allocations for good

one production depends on the implemented allocation for good two. However, Assumption 1 pins

down the optimal allocation for good two also in the second best, which is of course precisely the

reason to impose it in the �rst place.

Lemma 1 Under Assumption 1, a second-best allocation entails q (�; �) = q0 and q
�
�; �
�
= qn for

all �:

If the cost di¤erences in the � dimension are large, the �rst-best allocation rule for good two

production continues to be optimal also with asymmetric information. The reason is that surplus

is maximal for this allocation and at the same time incentive constraints are as relaxed as they can

be. Focussing on this case allows me to concentrate on the distortions relative to the case where

there is only one good that is to be produced in quantity x: By design, all the distortions occur in

the good one dimension.
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Lemma 2 Under Assumption 1, for the second-best optimal allocation rule for good two, q (�; �) =

q0 and q
�
�; �
�
= qn for all �; the incentive constraint (2) is equivalent to the pair of one-dimensional

constraints

�(�; �; �; �) � �
�
�̂; �; �; �

�
(4)

and

�(�; �; �; �) � �(�; �; �̂; �) : (5)

The intuition for this result is very simple. A �rm�s incentive to report its cost parameter

� do not depend on what the �rm reported about its cost parameter �; and vice versa. To see

this, suppose a �rm with cost parameters (�; �) announces �̂ 6= �. Its pro�t di¤ers from the pro�t

of a �rm with cost parameters (�; �̂) by the amount [q (�; �̂)� q (�; �)] �: However, as long as the

functions q (�; �̂) and q (�; �) are independent of �; the di¤erence in pro�ts is an additive constant.

Hence, the �rm�s optimal report in the � dimension is not a¤ected by its report in the � dimension.

Hence, the two-dimensional constraint breaks down into a pair of one-dimensional constraints.7

This insight allows me to state the incentive and participation constraints in a tractable manner.

Let � (�; �) � max�̂ �
�
�̂; �; �; �

�
:

Lemma 3 i) The incentive constraint (4) is satis�ed if and only if

� (�; �) = �
�
�; �
�
+

�Z
�

x (y; �) dy (6)

and x (�; �) is non-increasing in � for all �;

ii) The incentive constraint (5) is satis�ed if and only if

qn
�
� � �

�
� �

�
�; �
�
� � (�; �) � q0

�
� � �

�
: (7)

iii) The participation constraints (3) are met if � (�; �) � 0:

The proof of the Lemma is standard and therefore omitted8 . To prove part i) one applies

the well known envelope arguments to compute changes in the �rm�s rents when � changes but

� is held constant. Therefore, the rent of a �rm of type (�; �) is equal to the sum of the rent of

the most ine¢ cient �rm within �rms with cost parameter �; �
�
�; �
�
; and the marginal changes

of the �rm�s rent with respect to changes in its cost parameter �: Notice that (6) allows for the

7This is the crucial di¤erence to the multi-dimensional problems of Armstrong and Rochet (1999) and Rochet

and Choné (2003), where the reduction of incentive compatibility conditions is not possible.
8See, e.g., La¤ont and Tirole (1993).
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case where �
�
�; �
�
> 0; so some high cost types may receive rents. Part ii) follows directly from

Lemma 2. In the proof of Lemma 2, I have shown that di¤erences in pro�ts when mimicking a �rm

with a di¤erent cost of producing good two are captured entirely by di¤erences in ��xed costs�.

Condition (7) merely restates this �nding. Finally, part iii) is obvious by the usual argument in

one-dimensional models implying that the single-crossing condition (in x and �) implies that the

participation constraint can only bind at one end. Condition (7) implies, that type
�
�; �
�
will

automatically participate if type
�
�; �
�
does and hence the result.

3.2 The control problem

I ease notation henceforth letting x (�) � x (�; �) and x (�) � x
�
�; �
�
; and likewise for the rent

schedules � (�) and � (�) : Morover, I let � � �
�
�
�
and � � �

�
�
�
: De�ne the virtual surplus

B (x; q; �; �) � V 1 (x) + V 2 (q)� C (x; q; �; �)� (1� �)xF (� j� )
f (� j� ) :

For future reference, I also de�ne the excess rent of a type
�
�; �
�
over a type (�; �) as

� (�; �; �) � � +
�Z
�

x (y) dy � � �
�Z
�

x (y) dy:

Using (6) to substitute out transfers from the regulator�s problem, and integrating by parts, I

obtain the following representation of the regulator�s problem, which, for future reference, I denote

as problem P�

max
x(�);x(�);�;�

8>>>>>>><>>>>>>>:

�

�Z
�

B
�
x (�) ; qn; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
�Z
�

B (x (�) ; q0; �; �) f (� j� ) d� � (1� �) (1� �)�

9>>>>>>>=>>>>>>>;
(8)

s:t:

� (�; �; �) � q0
�
� � �

�
(9)

� (�; �; �) � qn
�
� � �

�
; and (10)

x (�) ; x (�) non-increasing in �: (11)

� � 0 (12)

Problem P�has the following structure. If the monotonicity constraints on x (�) and x (�) are

nonbinding; the problem can be viewed as a control problem with two control variables, x (�) and

11



x (�) ; and two state variables, �
�Z
�

x (y) dy and �
�Z
�

x (y) dy: Moreover, the state variables enter

the problem through inequality constraints. This is a relatively complex problem, but solution

techniques are available in the literature (see, e.g., Kamien and Schwartz (1981) or Seyerstad and

Sydsaeter (1999)). If the monotonicity constraints are binding for some �; the problem involves

second derivatives. This case becomes extremely di¢ cult to analyze. Therefore my approach is to

impose assumptions that guarantee that the monotonicity constraints are slack at the solution to

problem P�.

The presence of the constraints (9) and (10) alters the problem substantially. However, the

conceptual di¤erence to the standard problem requires only one of these constraints being nontriv-

ially present. Therefore, to streamline the exposition, I assume that qn
�
� � �

�
is su¢ ciently large.

This is consistent with Assumption 1 and guarantees that (10) is satis�ed automatically. So, the

relevant constraint is (9) : Normalizing q0 = 0; this constraint simpli�es to � (�; �; �) � 0:9

4 A benchmark

Before I dive into the main analysis of this problem, it is useful to look into a benchmark case where

all the constraints are automatically satis�ed. Suppose I neglected all the constraints in problem

P�. Clearly, it would then be optimal to extract all the rents from the least e¢ cient producers

within �rms with the same parameter �; so � = � = 0: Moreover, the quantity schedules for good

one would be chosen to maximize virtual surplus, so these schedules would satisfy

V 1x
�
xy (�)

�
= � + �qn + (1� �)

F
�
�
��� �

f
�
�
��� � (13)

and

V 1x
�
xy (�)

�
= � + (1� �) F (� j� )

f (� j� ) : (14)

Direct inspection of these schedules reveals the following results:
9The formulation above reveals an interesting connection between the multidimensional model of screening and

models with type dependent participation constraints, as in the literature on countervailing incentives (Lewis and

Sappington [1989] and Maggi and Rodriguez-Clare [1995]) and type dependent participation constraints in general

(Jullien [2000]). Formally, one solves a family of problems that are constrained by the between groups incentive

constraints, where �rms are grouped or strati�ed along the observed choice of production of good two they make.

When concentrating on the menu o¤ered to �rms making the same choice, the designer solves a mechanism design

problem with a type dependent constraint given by the menu o¤ered to the group of �rms making the other choice.

In contrast to this literature, the type dependent constraint is endogenous in the present context, while the outside

option is exogenous in the literature on participation constraints.

12



Proposition 1 Suppose that � � � is su¢ ciently large and that @
@�

F(�j� )
f(�j� ) ;

@
@�

F (�j� )
f(�j� ) � 0. If � � 0

and F (�j� )
f(�j� ) �

F(�j� )
f(�j� ) ; then the optimal quantity schedules for good one are given by (13) and (14) :

Within the class of �rms with the same parameter �; all but the lowest cost �rm produce less than

the �rst-best amount; there is no rent for the highest cost producer, that is �� = �� = 0:

The point is that the �unconstrained� solution that would obtain if I neglected the multi-

dimensional nature of the problem happens to satisfy all the neglected constraints. Clearly, if such

an �unconstrained�solution is feasible, then it is also optimal.

Constraint (10) is satis�ed whenever qn
�
� � �

�
is su¢ ciently large, which I assume, consistently

with Assumption 1. To develop an intuition why the other two constraints are satis�ed as well, it

is useful to begin with the case where � and � are statistically independent and the distribution

of � has a monotonic inverse reversed hazard rate. Firms with a low � parameter produce higher

amounts of good two. For � < 0 this reduces their marginal cost of producing good one, so �rms

with low � parameter produce higher amounts of good one than their counterparts with high �

parameters do. In turn, higher amounts of production of good one create higher rents for �rms.

Hence, a �rm that has a cost advantage in the production of good two has every incentive to

announce this truthfully. The intuition is depicted graphically in �gure 1:

Figure 1: The rent of a type
�
�0; �

�
is given by the area aefd, which is - by monotonicity of the

allocation in � - larger than the area abcd, the rent of a type
�
�0; �

�
:

A similar intuition underlies the case of statistical dependence. If F (�j� )
f(�j� ) �

F(�j� )
f(�j� ) ; then �

conditional on � = � is said to be smaller than � conditional on � = � in the reversed hazard
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rate order.10 The reversed hazard rate measures for given � the relative importance the regulator

attaches to obtaining an e¢ cient quantity and to extracting rents from �rms with costs lower than

�; respectively. In turn, reversed hazard rate dominance in the sense of the proposition implies

that rent extraction is relatively more important for �rms with high � parameters, so the optimum

features xy (�) � xy (�) for any � � 0; again generating higher rents for �rms with low parameter

�:

In sum, truthfully revealing a low type � is in the �rm�s interest because that increases the

�rm�s rents. A high � �rm has no incentive to mimic a low � �rm because qn
�
� � �

�
; the cost of

this deviation, is too high. Hence, only the incentive constraints in the � dimension are binding

and the problem can be solved as a pair of one-dimensional problems. Replacing marginal utilities

by marginal prices, (13) and (14) pin down the marginal prices of good one.

4.1 The Agenda

Proposition 1 lists conditions under which the solution of a multidimensional problem can be

obtained using entirely one-dimensional methods; hence everything is exactly as in the one-

dimensional world. The agenda for the remainder of the paper is to drop these assumptions

in a controlled fashion. If � is strictly positive, then the marginal cost of producing good one is

increased for �rms with parameter �: Increases in marginal costs reduce the schedule xy (�) point-

wise and thus reduce rents of types with parameter �: Hence, for � strictly positive, constraint (9)

must be binding for � = 0; unless the statistical e¤ect through the reversed inverse hazard rate

counteracts this e¤ect and is su¢ ciently large. Similarly, even if there are no direct interactions

in the cost function, � = 0; constraint (9) becomes binding for � = 0 due to statistical inference

when the distributions satisfy F (�j� )
f(�j� ) <

F(�j� )
f(�j� ) for � > �:

To isolate these e¤ects, I proceed as follows. I �rst analyze the e¤ect of direct cost interac-

tions (� > 0), assuming away any interactions due to statistical inference, i.e. assuming that the

distribution of � is independent of �: Secondly, I analyze the case where the only interaction is

statistical inference, thus assuming that � = 0 and that � conditional on � = � is strictly higher

than � conditional on � = � in the reversed hazard rate order. Finally, I discuss what can be said

about cases where there is both real interaction in the sense that � 6= 0 and interaction due to

statistical inference.
10This implies that � conditional on � = � is smaller in the usual stochastic order � = � (that is, First Order

Stochastic Dominance) than � conditional on � = � (see Shaked and Shantikumar (2007)):
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Throughout this paper, I will maintain two important assumptions. Firstly, I maintain the

assumption that cost di¤erences in the production of good two are su¢ ciently large. If this as-

sumption is dropped, then the allocation for good two identi�ed in Lemma 1 may no longer be

optimal. I study this case in companion work. Putting everything together would overload the

present paper. Secondly, I impose assumptions on the distribution of types that allow me to ne-

glect constraint (11) without loss of generality. Without such assumptions I would face problems

of bunching in the �-dimension of my problem, and would face these problems already in the

benchmark case, where the problem reduces to one-dimensional subproblems. By assuming such

issues away, I can focus on bunching along the �-dimension, which seems more novel.

5 Interactions between the dimensions

It is immediate that the �rm with the highest cost in both dimensions must have no rent at the

optimum, that is �� = 0: The reason is that reducing � relaxes constraint (9) and raises the

regulator�s objective. Hence, with a slight abuse of notation, I write the excess rent of a low � type

over his high � counterpart as

� (�; �) � � +
�Z
�

x (y) dy �
�Z
�

x (y) dy: (15)

Consider a �reduced� version of the regulator�s problem, which for future reference is denoted

problem P�:

max
x(�);x(�);�

8>>>>>>><>>>>>>>:

�

�Z
�

B
�
x (�) ; qn; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
�Z
�

B (x (�) ; q0; �; �) f (� j� ) d�

9>>>>>>>=>>>>>>>;
(16)

s.t. for all �

� (�; �) � 0: (17)

The problem is reduced in the sense that (11) and (10) are omitted from the problem. However,

as I have argued above, given that � � � is su¢ ciently large, omitting (10) is without further loss

of generality. Dropping (11) from the problem is justi�ed under assumptions on the conditional

distributions of � given �; which I will make explicit as I go along.

Compared to the original problem, maximizing (16) under constraint (17) is relatively simple.

However, the problem remains quite nasty. The reason is that the costate variables of control
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problems with inequality constraints on state variables can display jumps at points where constraint

(17) switches from being binding to being slack. Therefore, one needs an educated guess as to where

precisely the constraint is binding.

5.1 The nature of incentive spillover-e¤ects

The way the regulator resolves the traditional e¢ ciency versus rent extraction trade-o¤ within

groups of �rms with the same cost parameter � impacts on these �rms�incentive to mimic �rms

with a di¤erent � parameter. This can be seen from a di¤erentiation of (17) with respect to �: We

have �� (�; �) = x (�) � x (�) : So, if x (�) > x (�) ; then increasing � marginally eases the �rm�s

incentive to overstate �; if x (�) < x (�) ; then the reverse happens. Vice-versa, constraint (17) may

force the regulator to bunch �rms with di¤erent � parameters but the same � parameter together.

In particular, if (17) is binding over an interval
�
�0; �00

�
, then �� (�; �) = 0 over that interval and

hence x (�) = x (�) for all � 2
�
�0; �00

�
:

Suppose that the schedules xy (�) and xy (�) de�ned by (13) and (14) violate constraint (17)

by an amount �y �
�Z
�

xy (y) dy �
�Z
�

xy (y) dy > 0: Then at the solution of problem P�, constraint

(17) must necessarily be binding for some �: If (17) were non-binding for all �; then xy (�) and

xy (�) would be optimal. However, this requires that the regulator leaves at least a rent �y to all

�rms with low costs of producing good two. However, setting � � �y cannot be optimal. Around

� = �y; the marginal cost of increasing � is equal to �� (1� �); a fraction of �rms � has low

costs of producing good two and rents left to �rms enter the regulators payo¤ function with a

weight of � (1� �) : On the other hand, the bene�t of increasing � around � = �y is zero, as the

regulator is already unconstrained by condition (17) for � = �y: Hence, at the optimum I must

have 0 � �� < �y:11

In the Appendix, I formulate the optimal control version of problem P�. The following Lemma

follows immediately from the optimality conditions at the low end of the support:

Lemma 4 Suppose that the schedules xy (�) and xy (�) de�ned by (13) and (14) satisfy

i)

�Z
�

xy (y) dy �
�Z
�

xy (y) dy > 0:

If in addition either

ii) xy (�) < xy (�) for all �; or

iii) xy (�) < xy (�) and xy (�) crosses xy (�) exactly once, then

11This heuristic argument is made more formally in the proof of Proposition 2 below.
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at the solution to problem P�, constraint (17) is binding at � = �:

In particular, conditions i) and ii) are met if � � 0 and F (�j� )
f(�j� ) �

F(�j� )
f(�j� ) for all �; and either

of these inequalities is strict; condition iii) is met for � > 0 but su¢ ciently close to zero and

@
@�

F (�j� )
f(�j� ) >

@
@�

F(�j� )
f(�j� ) for all �:

The proof is a simple argument by contradiction. Let x� (�) and x� (�) denote the optimal

quantity schedules solving problem P�. If constraint (17) were slack at � = �; then I could use the

transversality conditions of the problem to conclude that x� (�) = xy (�) and x� (�) = xy (�) for all

� � �0; where �0 is the smallest � where (17) is binding. If xy (�), xy (�) satisfy condition i), then

there is indeed �0 such that (17) is binding at �0: Using conditions ii) and iii), it is easy to see that

we must have xy
�
�0
�
< xy

�
�0
�
:12 However, this implies that ��

�
�0; �

�
= xy

�
�0
�
� xy

�
�0
�
> 0 and

hence that � (�; �) < 0 for � close to but smaller than �0: In fact, under conditions ii) or iii), we

have xy (�) < xy (�) for all � < �0 hence (17) would be violated for all � < �0.

Even though one needs to invoke optimal control theory to solve the problem, the intuition for

the structure of the solution can be grasped using simpler methods. Essentially, this is because on

intervals where constraint (17) is slack, the costate variables of my control problem are constants.

So, consider a candidate optimal pair of schedules such that (17) is binding at �1 and slack on a

set (�1; �2] : The quantity schedules for good one then take the form

V 1x (x
� (�)) = � + �qn + (1� �)

F (�)

f (�)
� �

�f (�)
(18)

and

V 1x (x
� (�)) = � + (1� �) F (�)

f (�)
+

�

(1� �) f (�) (19)

on the interval (�1; �2] for some value � � 0: Obviously, the di¢ culty is that the value of � is not

known; it is only determined as part of the solution. Moreover, it is not clear a priori, whether at

the optimum there exists such an interval at all. De�ne x� (�;�) and x� (�;�) by conditions (18)

and (19) for arbitrary, not just the optimal, value of � � 0:

Lemma 5 Suppose that x� (�;�) and x� (�;�) de�ned by (18) and (19) satisfy

x� (�;�) = x� (�;�) =) dx� (�;�)

d�
� dx� (�;�)

d�
; (20)

12Under condition ii) this is immediate. Under condition iii), note that

�Z
�0

xy (y) dy�
�Z

�0

xy (y) dy = 0: Since xy (�)

crosses xy (�) exactly once, and xy
�
�
�
< xy

�
�
�
; this implies the conclusion.

17



Figure 2: For schedules that satisfy (20) ; imposing (17) only at � is su¢ cient for (17) at all �:

� (�; �) is increasing in � if x� (�;��) > x� (�;�) and decreasing in � if x� (�;��) < x� (�;�) :

then at the solution to problem P�, (17) is binding only at �:

If x� (�;�) and x� (�;�) satisfy

x� (�;�) = x� (�;�) =) dx� (�;�)

d�
>
dx� (�;�)

d�
; (21)

then at the solution to problem P�, constraint (17) is binding on a set
�
�; �0

�
for some �0 � �:

To understand (20) ; suppose I take �1 = � and �2 = �: Moreover, let �� take a value such

that �+

�Z
�

x� (y;��) dy�
�Z
�

x� (y;��) dy = 0: Under condition (20) ; �� must be such that either i)

x� (�;��) > x� (�;�) for all � or that ii) x� (�;��) > x� (�;�) and the two schedules x� (�;�) and

x� (�;�) cross exactly once or ii) :13 The latter situation is depicted in �gure 2.

Notice that (20) refers to properties of the endogenous solution schedules. So, the conditions in

the Lemma should be read the way that if the conditional distributions are such that the solution

schedules inherit property (20) ; then (17) is binding only at �:

13The third situation, where x� (�;��) < x� (�;�) for all � would imply that �� (�; �) = x� (�;��)� x� (�;�) < 0

for all �; which would imply that � (�; �) < 0 for � larger but close to �:
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Figure 3: Under condition (21), it cannot be the case that (17) is binding over an interval, then

nonbinding over some interval and then binding again.

When condition (21) holds, then there cannot be two points �1; �2 such that constraint (17) is

binding at these points and slack in between. Letting � adjust to a value such that

�2Z
�1

x� (y;��) dy�

�2Z
�1

x� (y;��) dy = 0; it would have to be the case that the schedule x� (�;�) crosses the schedule

x� (�;�) exactly once from above. However, that would imply that �� (�1; �) = x� (�1;�
�) �

x� (�1;�
�) < 0; so (17) would be violated for � larger than but close to �1: The intuition is depicted

graphically in �gure 3.

Note once again that the schedules x� (�) and x� (�) are endogenous, so I cannot make direct

assumptions on these schedules. However, Lemma 5 is nevertheless extremely useful, because it

makes my problem accessible to an �educated guessing and verifying�solution procedure, where I

search for conditions on the conditional distributions of � such that the solution schedules x� (�)

and x� (�) endogenously inherit single-crossing conditions. Then, Lemma 5 allows me to pin down

the regions where constraint (17) is binding.
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6 The Optimal Allocation

I can now present the solution of my problem. The following section is organized along conditions

on the primitives that give rise to the cases stated in Lemma 5.

6.1 Strict net substitutes and independent types

In this section, I focus on the case where � > 0; so raising the amount of production of good two

raises the marginal cost of producing good one. To isolate the role of this net-substitutability, I

assume in this section that knowing � does not provide any additional information about � :

Assumption 2a: f (� j� ) = f
�
�
��� � = f (�) :

In addition to that, I impose:

Assumption 2b: f� (�) � 0 and @
@�

1�F (�)
f(�) � 0:14

The purpose of Assumption 2 is twofold15 . First, it guarantees that the monotonicity constraints

(11) are automatically satis�ed. Second, it guarantees that at the solution to problem P�, (17)

binds only at � = �:

With constraint (17) binding only at �; the solution is very easy to obtain. Formally, if (17) is

replaced by

� (�; �) = 0; (22)

then the regulator�s problem no longer involves constraints on the state variables but turns into

an isoperimetric problem. Hence, the optimum can be found by simple pointwise maximization.

It is useful to split the maximization into two steps. In the �rst step, � is taken as given and the

quantity schedules for good one production are chosen optimally against the given level of �: In

the second step, I optimize over the choice of �:

Let k (�) denote the multiplier attached to constraint (22) : For the isoperimetric problem,

k (�) is independent of �: The shadow cost attached to the constraint is the smaller the higher is

�: Moreover, let x� (�; k) and x� (�; k) denote the optimal schedules for given �: The �rst-order

14As is well known, distributions with logconcave densities have non-decreasing hazard rates. The restriction to

decreasing densities amounts obviously to a subset of these distributions. Examples include the uniform but many

more. As logconcave densities are unimodal, we can create a distribution that satis�es the restriction from any

distribution with a mode in the interior of the support by truncating the distribution to the part to the right of the

mode.
15Throughout the paper, distributions that satisfy both Assumptions 2a and 2b will be referred to as distributions

satisfying Assumption 2.

20



conditions for the optimal schedules are

V 1x (x
� (�; k)) = � + �qn + (1� �)

F (�)

f (�)
� k (�)

�f (�)
(23)

and

V 1x (x
� (�; k)) = � + (1� �) F (�)

f (�)
+

k (�)

(1� �) f (�) : (24)

The intuition for these expressions is straightforward. If I were to solve my problem simply as a

pair of independent regulation problems, then I would obtain conditions (23) and (24) with k = 0:

However, by the conditions in Lemma 4, these schedules violate constraint (22) : So, to satisfy the

constraint, x� (�; k) is adjusted downwards and x� (�; k) is adjusted upwards so as to increase the

rents of �rms with low costs of producing good two relative to their counterparts with high costs

of producing good two.

Consider now the optimal choice of � and let � (�) denote the value of the regulator�s objective

as a function of �: Invoking the envelope theorem, I have

�� (�) = k (�)� � (1� �) :

The marginal bene�t of increasing � is that the regulator becomes less constrained when choosing

the production schedules x� (�; k) and x� (�; k) ; this is measured by the shadow cost k (�) : The

marginal cost of increasing � is the additional rents that are left to �rms with cost parameter �.

As k (�) is decreasing in �; the regulator�s problem is concave in �; so it is optimal to leave a

strictly positive rent to �rms with a cost parameter � if and only if k (0) > � (1� �) : Moreover,

if �� > 0; then we know that marginal bene�ts and costs of increasing � must be equal at the

optimum, so the value of the multiplier in this case is k (��) = � (1� �) : Supposing for the sake

of the argument that �� > 0; I can substitute this value into (23) and (24) ; I obtain the following

schedules xyy (�) and xyy (�) :

V 1x
�
xyy (�)

�
= � + �qn � (1� �)

1� F (�)
f (�)

(25)

and

V 1x
�
xyy (�)

�
= � + (1� �)

�
1�� + F (�)

f (�)
: (26)

I can now characterize the solution to my problem.

Proposition 2 Suppose that ��� is su¢ ciently large to satisfy Assumption 1. Moreover, suppose

that � is strictly positive and the distribution of � satis�es Assumption 2. Then, the optimal sched-

ules of good one production are given by xyy (�) and xyy (�) (de�ned in (25) and (26) ; respectively)
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together with �� > 0 if and only if

�Z
�

xyy (�) d� <

�Z
�

xyy (�) d�: Otherwise, the optimal schedules are

given by (23) and (24) together with �� = 0; where k� solves

�Z
�

x� (�; k�) d� =

�Z
�

x� (�; k�) d�:

In particular, for the uniform distribution, �� > 0 if and only if (1� �) �qn
�
� � �

�
> (1� �) :

The proof of the Proposition simply consists in verifying that all the constraints are met and

that �� > 0 under the said conditions.

It is easy to see that the constraints are all satis�ed. Assumption 2 implies that that the

solution schedules (23) and (24) satisfy the single crossing condition (20) for any k � � (1� �) ; so

imposing (22) rather than (17) is justi�ed. Moreover, the schedules are monotonic, so they satisfy

constraint (11) : To understand the conditions for �� > 0; consider the function

� (k) �
�Z
�

(x� (�; k)� x� (�; k)) d�:

I show in the appendix that � (k) is an increasing function of the multiplier, k: We know that

� (0) < 0; since otherwise the constraint would not be binding at all. k (0) is the value of k solving

� (k)jk=k(0) = 0: Since � (k) is increasing in k; we have k (0) � � (1� �) if and only if

0 = � (k)jk=k(0) � � (k)jk=�(1��)

Substituting k = � (1� �) into the �rst-order conditions we get the schedules (25) and (26) ; in

turn, substituting these schedules into � (k) ; we get the condition in the Proposition.

For the uniform distribution, the condition can be expressed completely in terms of parameters.

(23) and (24) simplify to

x� (�) =
�
V 1x
��1�

� + (1� �) (� � �)
� � �

+ �qn �
k

�

1

� � �

�
and

x� (�) =
�
V 1x
��1�

� + (1� �) (� � �)
� � �

+
k

1� �
1

� � �

�
:

k (0) satis�es the condition �qn � k(0)
�

1
��� =

k(0)
1��

1
��� :

16 Hence, I have k (0) = (1� �)��qn
�
� � �

�
and so k (0) � � (1� �) if and only if (1� �) �qn

�
� � �

�
> (1� �) :

Leaving a rent to type
�
�; �
�
seems to be a natural, rather than a pathological outcome. These

conditions are easy to meet and consistent with the requirement that � � � be su¢ ciently large.
16To see this, observe that for any value of k (0) di¤erent from this one; I would have either x� (�) > x� (�) for all

� or x� (�) < x� (�) for all �; and both possibilities are inconsistent with condition (22) for � = 0:
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The intuition for the result is that increasing � allows the regulator to tailor the quantity schedules

x� (�) and x� (�) for good one better to the marginal costs of production for good one; these costs

are higher for types with low cost of producing good two, because they are asked to produce the

larger amount of good two. It is optimal to leave a rent to type
�
�; �
�
if, all else equal, the weight

attached to �rm pro�ts becomes larger, if the fraction of �rms with a low cost of producing good

two becomes smaller, and if the di¤erence in marginal costs of producing good one become larger.

The solution has some remarkable properties. Firstly, the production schedules are distorted

away from �rst-best for the most e¢ cient producer. The least cost producer of good one is the

�rm with cost parameters (�; �) : Even though the �rm with parameters
�
�; �
�
has the lowest cost

parameters, this �rm is asked to produce a higher amount of good two, and this raises its marginal

cost of producing good one. However, regardless of how the most e¢ cient �rm is de�ned, we have

x� (�; k) > xfb (�) and x� (�; k) < xfb (�) :

Secondly, the direction of distortions away from the �rst-best allocation di¤ers from the usual

features obtained in one-dimensional models. Whereas my model features downward distortions

if production schedules are designed when the regulator and the �rm both know �; asymmetric

information about � causes upwards distortions in the production schedule for �rms with cost

parameter � and downward distortions for �rms with cost parameter �: The downward distortions

for the latter group of �rms is more pronounced than in the one-dimensional model. The upward

distortion in the production schedule for �rms with cost parameter � is most pronounced if k

is as large as possible, that is if �� > 0: In this case, xyy (�) reveals that, all but the highest

cost producer in this group produce more than the �rst-best amount; the highest cost producer

in this group produces an e¢ cient amount. Note that, in order to induce consumers to buy an

amount xyy (�) ; the �rm has to set prices below marginal cost. Formally, this can be seen noting

that V 1x (x) = P 1 (x) : So, this model can explain below-marginal-cost-pricing in the absence of

competition or demand complementarities.

6.2 Neutral goods and a¢ liated types: the case of complete bunching

In this section I focus on information based reasons for binding constraints in both dimensions. In

particular, I assume that � = 0; that is, the goods are neutral. Moreover, I impose:

Assumption 3: � and � are a¢ liated, i.e. @
@�

f(�j� )
f(�j� ) > 0:

The reason I assume a¢ liation17 is that it allows me to pin down the bunching region.

17A¢ liation is consistent with the reverse hazard rate order; more precisely, a¢ liation implies the reverse hazard
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Lemma 6 If � and � are a¢ liated, then the schedules x (�) and x (�) de�ned by 
V 1x (x (�))� � � (1� �)

F
�
�j �
�

f
�
�j �
� !�f ��j ��+ � = 0 (27)

and �
V 1x (x (�))� � � (1� �)

F (�j �)
f (�j �)

�
(1� �) f (�j �)� � = 0; (28)

satisfy (21) for any � � 0:

Given Lemmas 5 and 6, the optimum can be found among solution schedules that involve a

regime of bunching in the �-dimension for values of � below some value �0 and a regime of separation

in the �-dimension for values of � higher than �0: The point �0 is endogenously determined by the

optimal choice of the quantity schedules for good one and the level of �:

To understand the trade-o¤s involved it is again useful to approach the problem sequentially.

I �rst take as given any value of � 2
�
0; �y

�
; and solve for the optimal production schedules for

good one. In the second step I endogenize the choice of �:

Lemma 7 For a given � 2
�
0; �y

�
; the optimal production schedules x� (�; k (�)) and x� (�; k (�))

are determined as follows:

for � � �0, the optimal schedules satisfy x� (�; �) = x� (�; �) = x� (�) where x� (�) satis�es

V 1x (x
� (�)) = � + (1� �) F (�)

f (�)
: (29)

For � > �0, x� (�; k (�)) satis�es (27) and x� (�; k (�)) satis�es (28).

�0 (�) and k (�) are jointly determined by the conditions

� +

�Z
�0

x (�; k) d� �
�Z

�0

x (�; k) d� = 0

and

x
�
�0; k

�
= x

�
�0; k

�
= x�

�
�0
�
:

The solution is depicted in �gure 4.

There is bunching of di¤erent � types who have the same marginal cost parameter � at the low

end of the � support; at the high end there is separation of such types. Moroever, at the point

where the regime changes from bunching to separation of di¤erent � types, the solution schedules

switch continuously from one regime to the other. The idea to show this is the following. The e¤ect

rate order but is not implied by it. (See Shaked and Shantikumar (2007)).
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Figure 4: Raising � �pushes the point �0 to the left�; a higher � enables the regulator to separate

a larger portion of types.

of a marginal change of �0 on the value of the regulator�s payo¤ function should be zero around the

optimal value of the switch-point �0: This requires that, conditional on � = �0; the expected value

of the objective at �0 - where there is bunching - should be the same as the expected value of the

objective just after the switch point, that is at � = �0 + " for " positive but arbitrarily small. This

value matching condition essentially boils down to requiring continuity of the solution schedules.

Thus, �0 is the unique intersection of the schedules de�ned by (27), (28), and (29) and the value

of the multiplier, k (�) ; adjusts so that the rents of types
�
�0; �

�
and

�
�0; �

�
are exactly equal.

Consider now the optimal choice of �: Figure 4 illustrates the trade-o¤ the regulator faces when

choosing �: The higher is �; the larger is the separating region at the high end of the support.

So, at the cost of giving up rents to all types with a low parameter �; the regulator can solve

the e¢ ciency versus rent extraction trade-o¤ within groups of agents with the same parameter �

better.

The following Proposition completely describes the optimum. To rule out problems of bunching

in the � dimension, I assume that

Assumption 4: F (�)
f(�) is nondecreasing in �:

Proposition 3 For � = 0; ��� su¢ ciently large, and under Assumptions 3 and 4, the optimum
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involves �� = 0 and quantity schedules x� (�) = x� (�) � x� (�) where x� (�) satis�es

V 1x (x
� (�)) = � + (1� �) F (�)

f (�)
: (30)

There is complete bunching of types, that is the solution schedules become independent of �

altogether - except for the allocation of good two. The quantity schedule has the familiar features:

there is no distortion at the top, there is a downward distortion for all types with cost larger than

the minimum, and there is no rent at the bottom.

It is never optimal to leave rents to ine¢ cient producers among �rms with low cost parameter

�: Since � = 0; the only motive to o¤er two di¤erent schedules x� (�) and x� (�) to producers with

di¤erent cost of producing good two is to extract more rents from producers within each group. If

� is increased marginally, then the regulator can extract some more rents over a small additional

interval of types in the � dimension. However, the cost of this change outweighs the bene�ts by

far, as the regulator leaves an addtional rent d� to all producers with cost parameter �:

7 Extensions and Conclusions

I have solved a regulation problem featuring two-dimensional asymmetric information about the

costs of production of two goods in some detail. The optimal allocation di¤ers markedly from its

one-dimensional counterpart, except in special cases. Most interestingly it can be optimal to dis-

tort production upwards instead of downwards. The rationale for this result is a trade-o¤ between

e¢ ciency and rent extraction that involves the second dimension of asymmetric information, and

this trade-o¤ feeds back into the e¢ ciency-rent extraction trade-o¤ in the �rst dimension. More-

over, it can be optimal to leave rents to the most ine¢ cient producer among those with a low cost

of producing the second good. The rationale is again that increasing this rent allows the regulator

to better resolve the standard trade-o¤ between e¢ ciency and rent-extraction within groups of

producers with the same cost of producing good two (but di¤erent and privately known costs of

producing good one).

The presentation in this paper is streamlined around cases that display interesting economic

�ndings. However, the solution procedure readily extends to other cases that satisfy the condi-

tions in Lemma 5. In particular, one can rationalize allocations that feature separation at the

high end and bunching at the low end of the �-range by allowing for the right kind of statistical

dependence. Likewise, the paper is focussed around cases where the most tempting deviations in

the �-dimension relate to the incentive constraints of types with low costs of producing good two.
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It is straightforward to analyze cases where the �rms with high �-parameter must be kept from

mimicking �rms with a low �-parameter. This is analytically straightforward and not performed

here for reasons of space.

It has been observed that bunching is a robust feature in the multidimensional problem. This

paper clearly agrees with that view; with a¢ liated types the solution displays complete bunching in

the added dimension. However, the appeal of the present approach is that the solution techniques

still remain manageable even though there is bunching, as long as there is no bunching in the �-

dimension. This feature encourages further extensions, such as introducing richer trade-o¤s in the

good two allocation problem and enriching the type space further towards the double continuum

case. These extensions are pursued in ongoing work.

8 Appendix

8.1 Implementable Allocations

Proof of Lemma 1. Consider a candidate optimal allocation. It is useful to organize the

incentive constraints any such candidate needs to ful�ll into categories. First, one-dimensional

deviations must be suboptimal; for all �; � it must be true that

�(�; �; �; �) � �
�
�̂; �; �; �

�
for all �̂ (31)

and

�(�; �; �; �) � �(�; �; �̂; �) for all �̂: (32)

Moreover, two-dimensional deviations must be suboptimal too. De�ne the sets�i �
�
� : q

�
�; �
�
= qi

	
and �i � f� : q (�; �) = qig for i = 0; 1; � � � ; n: two-dimensional deviations are suboptimal for any

type with cost parameters
�
�; �
�
if

�
�
�; �; �; �

�
� �

�
�̂; �; �; �

�
for all �̂:

The right-hand side of this condition can be rewritten as

�
�
�̂; �; �; �

�
= �

�
�̂; �; �; �

�
+ qi

�
� � �

�
for �̂ 2 �i:

Likewise, two-dimensional deviations are suboptimal for any type with cost parameters (�; �) if

�(�; �; �; �) � �
�
�̂; �; �; �

�
for all �̂:

27



Again, the right-hand side of this condition can be rewritten as

�
�
�̂; �; �; �

�
= �

�
�̂; �; �; �

�
� qi

�
� � �

�
for �̂ 2 �i:

So, any candidate optimal allocation ful�lls in addition the following sets of dimensional constraints.

For all
�
�; �
�
and all i

�
�
�; �; �; �

�
� �

�
�̂; �; �; �

�
+ qi

�
� � �

�
for �̂ 2 �i: (33)

and

�(�; �; �; �) � �
�
�̂; �; �; �

�
� qi

�
� � �

�
for �̂ 2 �i (34)

The proof consists in showing that, starting from an incentive compatible allocation for which

any of the sets �j for j 6= 0 and �k for k 6= n are non-empty, one can create a new, incentive

compatible allocation and increase surplus. Hence, the initial candidate allocation cannot be

optimal.

Suppose we adjust the allocation to q (�; �) = q0 and q
�
�; �
�
= qn for all �: While doing this,

we adjust payments to keep the equilibrium pro�ts �
�
�; �; �; �

�
and �(�; �; �; �) unchanged for all

�: Keeping the production of good one constant, the transfer to the �rm with type
�
�; �
�
, where

� 2 �k; needs to increase by
�
� + �x

�
�; �
��
(qn � qk) : Likewise, the transfer to a �rm with type

(�; �) can be decreased by the amount (� + �x (�; �)) (qj � q0) for � 2 �j : By Assumption 1, both

changes result in an increase in surplus.

It remains to be shown that the new allocation satis�es all the incentive constraints. Notice

that

�
�
�̂; �; �; �

�
= �

�
�̂; �̂; �; �

�
+
�
�̂ � �

�
x
�
�̂; �
�
:

Hence, the change of allocation does not a¤ect �
�
�̂; �; �; �

�
in any sense. Therefore, (31) continues

to hold after the change of allocation. Consider now (34) and (33) : After the change of allocation,

these constraints take the form

�
�
�; �; �; �

�
� �

�
�̂; �; �; �

�
+ q0

�
� � �

�
for all �̂

and

�(�; �; �; �) � �
�
�̂; �; �; �

�
� qn

�
� � �

�
for all �̂:

Compared to (34) and (33) ; the right-hand side of these inequalities are reduced, so the old

incentive constraints imply the new ones.
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Finally, note that the incentive constraints in the � dimension alone are just a special case of

these two-dimensional ones. Since both �
�
�̂; �; �; �

�
and �

�
�̂; �; �; �

�
are (weakly) reduced for

any �̂; this holds in particular true for �̂ = �:

Hence, if the initial allocation is incentive compatible, we can create a new allocation, by

adjusting good two production as claimed, and increase surplus.

Proof of Lemma 2. Clearly, (4) and (5) are necessary for (2) : So, I need to show that they

are su¢ cient as well.

Given that the regulator follows a good two allocation rule q (�; �) = q0 and q
�
�; �
�
= qn for

all �; the pro�t of a type (�; �) �rm mimicking a type
�
�̂; �
�
�rm is equal to

�
�
�̂; �; �; �

�
= �

�
�̂; �; �; �

�
� qn

�
� � �

�
: (35)

Since �
�
�̂; �; �; �

�
and �

�
�̂; �; �; �

�
di¤er only by an additive constant (which is independent of

�̂), we have

argmax
�̂
�
�
�̂; �; �; �

�
= argmax

�̂
�
�
�̂; �; �; �

�
:

By (4), � = argmax�̂ �
�
�̂; �; �; �

�
; so

�(�; �; �; �) � �
�
�; �; �; �

�
for all �

implies that for all �

�(�; �; �; �) � �
�
�̂; �; �; �

�
for all �̂:

Likewise, the pro�t of a type
�
�; �
�
from mimicking a type

�
�̂; �
�
is equal to

�
�
�̂; �; �; �

�
= �

�
�̂; �; �; �

�
+ q0

�
� � �

�
(36)

so clearly again

argmax
�̂
�
�
�̂; �; �; �

�
= argmax

�̂
�
�
�̂; �; �; �

�
:

Again by (4), � = argmax�̂ �
�
�̂; �; �; �

�
; so

�
�
�; �; �; �

�
� �

�
�; �; �; �

�
for all �

implies that for all �

�
�
�; �; �; �

�
� �

�
�̂; �; �; �

�
for all �̂:
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Proof of Lemma 4. Let � = Pr
�
� = �

�
: The �reduced� problem where I neglect the

monotonicity constraints on x (�) and x (�) can be written as follows:

� (�) = max
x(�);x(�)

266666664
�

�Z
�

B
�
x (�) ; qn; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
�Z
�

B (x (�) ; q0; �; �) f (� j� ) d�

377777775

s:t: � +

�Z
�

x (y) dy �
�Z
�

x (y) dy � 0

Letting z � �
�Z
�

x (y) dy and z � �
�Z
�

x (y) dy I can note further that x = z� and x = z�:

I can view this as a control problem with Hamiltonian of the following form:

H = B
�
x (�) ; qn; �; �

�
�f
�
�
��� �+B (x (�) ; q0; �; �) (1� �) f �� ��� �

+�x+ �x+ � (� � (z � z))

Di¤erentiating with respect to state variables, I get the conditions of optimality

@H

@z
= � = ���

@H

@z
= �� = ���;

di¤erentiating with respect to the controls I get

@H

@x
=

�
V 1x (x (�))� � � �q0 � (1� �)

F (� j� )
f (� j� )

�
(1� �) f (� j� ) + � = 0 (37)

@H

@x
=

 
V 1x (x (�))� � � �qn � (1� �)

F
�
�
��� �

f
�
�
��� �

!
�f
�
�
��� �+ � = 0

The Kuhn-Tucker conditions are

� � (z � z) � 0; � � 0; and � (� � (z � z)) = 0:

Since both z (�) and z (�) are free, the transversality conditions are

� (�) = � (�) = 0:

Finally, the costate variables are allowed to take jumps at points where the inequality state con-

straint switches from being active to slack.

If � � (z (�)� z (�)) = 0 then

�
�
�+
�
� � (�) = 
0
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and

�
�
�+
�
� � (�) = �
0:

for some 
0: If � � (z (�)� z (�)) > 0; then 
0 = 0:

If �i 2
�
�; �
�
is a point where the inequality state constraint switches from being binding to

slack or vice-versa then

�
�
�+i
�
� � (�i) = 
i

and

�
�
�+i
�
� � (�i) = �
i

for some 
i: See Seierstad and Sydsaeter (1999) chapter 5 for a statement and proof of optimality

of these conditions.

Suppose that the state inequality constraint is slack at and continues to be slack on a set of

positive measure
�
�; �0

�
implying that 
0 = 0; � (�) = 0 and � (�) = 0 for all � 2

�
�; �0

�
: From

conditions (37) it is clear that � and � are continuously di¤erentiable in � whenever x and x are

continuously di¤erentiable in �: Using the conditions of optimality for the state variables, �� = ��

and �� = �; and the transversality conditions,I have for � � �0

� (�) = � (�) +

�Z
�

��d� = �
�Z
�

� (�) d� = 0

and

� (�) = � (�) +

�Z
�

� (�) d� = 0:

Hence, for � 2
�
�; �0

�
; I have

V 1x (x (�))� � � �q0 � (1� �)
F (� j� )
f (� j� ) = 0

and

V 1x (x (�))� � � �qn � (1� �)
F
�
�
��� �

f
�
�
��� � = 0:

These conditions are equivalent to (13) and (14) ; so these conditions would imply that x (�) = xy (�)

and x (�) = xy (�) for � � �0:

The proof that � < �y is made formally in the proof of Proposition 2 below. The argument in

the main text shows that the above conditions lead into a contradiction.

Proof of Lemma 5. Notice that

� (�) = �� (�) for all �:
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To see this, notice that at points where the controls are di¤erentiable, we have �� = �� (�) and

�� = � (�) : At points where the state inequality constraint switches from being active to passive

or vice versa we have �
�
�+i
�
� � (�i) = �

�
�
�
�+i
�
� � (�i)

�
, or �

�
�+
�
� � (�) = �

�
�
�
�+
�
� � (�)

�
if this point is �:

Moreover, since �� = �� (�) and �� = � (�) whenever, the controls are di¤erentiable, the costate

variabels are constants on any interval where the inequality state constraint is slack. Suppose

[�1; �2] is such an interval. Then, I can write

� (�) = �
�
�+1
�
for all � 2 (�1; �2)

and

� (�) = ��
�
�+1
�
for all � 2 (�1; �2) ;

where � (�) is non-negative.

Inserting these values into the conditions of optimality for the control variables, 37, I have�
V 1x (x

� (�))� � � �q0 � (1� �)
F (� j� )
f (� j� )

�
�

�
�
�+1
�

(1� �) f (� j� ) = 0

and  
V 1x (x

� (�))� � � �qn � (1� �)
F
�
�
��� �

f
�
�
��� �

!
+

�
�
�+1
�

�f
�
�
��� � = 0:

In the remainder of the proof, I show that these schedules are consistent with constraint (17) if

they satisfy (20) : In this case we can take the state inequality constraint binding on the minimal

set �: Moreover, I show that, when these schedules satisfy (21) ; then they are only consistent with

(17) if (17) binds on a single interval.

i) Suppose that the conditions of optimality satisfy (20) : Distinguish two cases, �2 < � and

�2 = �: If �2 < �; then (17) is binding at �2; so �
�
�+1
�
adjusts such that.

�2Z
�1

x� (y) dy �
�2Z
�1

x� (y) dy = 0:

Given condition (20) ; this implies that x�
�
�+1
�
> x�

�
�+1
�
, x�

�
��2
�
< x�

�
��2
�
; and that the

schedules cross exactly once. In turn, since

�� (�; �) = x
� (�)� x� (�)

this implies that � (�; �) is increasing at �+1 , reaches a maximum in the interior of (�1; �2) and

decreases again towards ��2 ; where � (�; �) = 0 by de�nition. Hence, the constraint is met for all

� 2 (�1; �2) :
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Consider now the case where �2 = �; where �
�
�; �
�
= � � 0: This case di¤ers from the former

one only if � > 0, so suppose this is the case. In this case, �
�
�+1
�
is reduced to allow for a de�cit

�2Z
�1

x� (y) dy �
�2Z
�1

x� (y) dy = ��: Reducing �
�
�+1
�
decreases x� (�) pointwise and increases x� (�)

pointwise, so it weakly increases �� (�; �) pointwise. Since for any � 2 (�1; �2) ;

� (�; �) = � (�1; �) +

�Z
�1

�y (y; �) dy;

this implies that � (�; �) � 0 for all � 2 (�1; �2) :

ii) Suppose now that condition (21) holds, so x (�) = x (�) =) dx(�)
d� > dx(�)

d� : Then, the

schedules x (�) and x (�) can only satisfy condition

�2Z
�1

x� (y) dy �
�2Z
�1

x� (y) dy = 0

if x�
�
�+1
�
< x�

�
�+1
�
, x�

�
��2
�
> x�

�
��2
�
; and if the schedules cross exactly once. But then, I would

have

��
�
�+1 ; �

�
= x�

�
�+1
�
� x�

�
�+1
�
< 0;

so (17) would be violated for some � 2 (�1; �2) : Hence, it is not possible that (17) is slack on the

interval (�1; �2) and becomes binding at �2 again. So, under condition (21) ; constraint (17) is, if

at all, binding on an interval.

Proof of Proposition 2. The Lagrangian of the problem is

L = max
x(�);x(�);�

266666664
�

�Z
�

B
�
x (�) ; qn; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
�Z
�

B (x (�) ; q0; �; �) f (� j� ) d�

377777775
(38)

+k

0B@ �Z
�

(x (�)� x (�)) d� + �

1CA :
In this formulation, k is independent of �: It is useful to solve this problem sequentially. In the �rst

step, I take � as given and solve for the quantity schedules that are optimal against that value of �:

In this step, the value of the multiplier depends on �; so I write k = k (�) : The quantity schedules

depend on � through the level of the multiplier, but I will simply write x� (�; k) and x� (�; k) to

keep notation compact.
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Step 1: For any given �; the problem is concave in x (�) and x (�) ; so by a standard su¢ ciency

theorem, the �rst-order conditions are necessary and su¢ cient for an optimum. The pointwise

�rst-order conditions with respect to the controls are�
V 1x (x

� (�; k))� � � �qn � (1� �)
F (�)

f (�)

�
�f (�) + k (�) = 0

and �
V 1x (x

� (�; k))� � � �q0 � (1� �)
F (�)

f (�)

�
(1� �) f (�)� k (�) = 0:

Step 2: Invoking the envelope theorem, the derivative of the objective with respect to � is

@L

@�
= �� (1� �) + k (�) ;

the second derivative with respect to � is

@2L

@�2
=
dk (�)

d�
:

I now show that dk(�)d� � 0; implying that the objective is concave in �:

Totally di¤erentiating the constraint

�Z
�

(x� (�; k)� x� (�; k)) d� + � = 0;

I obtain
dk (�)

d�
= � 1

�Z
�

(x�k (�; k)� x�k (�; k)) d�

:

Di¤erentiating the �rst-order conditions for the controls totally, I obtain

dx� (�; k)

dk
= � 1

V 1xx (x
� (�; k))�f (�)

(39)

and
dx� (�; k)

dk (�)
=

1

V 1xx (x
� (�; k)) (1� �) f (�) ; (40)

so x�k (�; k) > 0 and x
�
k (�; k) < 0; and thus

dk(�)
d� � 0:

Since the objective is concave in �; the �rst-order condition is necessary and su¢ cient for an

optimum. I have either �� = 0 and

k (��) � � (1� �)

or �� > 0 and

k (��) = � (1� �) :
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Notice that in either case we must have �� < �y since �y > 0 and k
�
�y
�
= 0: The former case

arises if and only if k (0) � � (1� �) : We now determine whether or not this condition holds.

Consider the function

� (k) �
�Z
�

(x� (�; k)� x� (�; k)) d�:

We know that � (0) < 0; since otherwise the constraint would not be binding at all. � (k) is

increasing in k: k (0) is the value of k solving � (k)jk=k(0) = 0: Since � (k) is increasing in k; we

have k (0) � � (1� �) if and only if

� (k)jk=k(0) = 0 � � (k)jk=�(1��)

Substituting k = � (1� �) into the �rst-order conditions we get the schedules

V 1x
�
xyy (�)

�
= � + �qn � (1� �)

1� F (�)
f (�)

and

V 1x
�
xyy (�)

�
= � + �q0 + (1� �)

�
1�� + F (�)

f (�)
:

Hence, we have k (0) � � (1� �) if and only if

�Z
�

xyy (�) d� �
�Z
�

xyy (�) d�:

Finally, we need to check incentive compatibilty in the � and in the � dimension.

Consider �rst incentive compatibility in the � dimension. The schedules (23) and (24) are

continuous; hence they are di¤erentiable everywhere and if they satisfy dx(�)
d� � 0 and dx(�)

d� � 0;

they are monotonic. Consider �rst the schedule x (�) : From a total di¤erentiation of (23) ; I obtain

dx�

d�
=

�
1 + (1� �) @

@�
F (�)
f(�)

�
+ k

�
f�(�)

f(�)2

V 1xx (x
� (�))

: (41)

A total di¤erentiation of (24) gives

dx�

d�
=

�
1 + (1� �) @

@�
F (�)
f(�)

�
� k�

1��
f�(�)

f(�)2

V 1xx (x
� (�))

; (42)

Observe that f� (�) � 0 implies that @
@�

F (�)
f(�) � 0: Hence, the numerator on the right-hand side of

(42) is non-negative and thus dx
�

d� � 0: The numerator on the right-hand side of (41) is minimized

for k as large as possible. As shown above, the highest possible value of k is � (1� �) : Hence we

have �
1 + (1� �) @

@�

F (�)

f (�)

�
+
k

�

f� (�)

f (�)
2 � 1� (1� �)

@

@�

1� F (�)
f (�)

� 0;
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where the �rst inequality follows from subsituting k = � (1� �) and the second one follows from
@
@�

1�F (�)
f(�) � 0:

Consider next incentive compatibility in the � dimension; we need to verify that the solution

schedules satisfy (20) : Clearly, f� (�) � 0 implies that the numerator on the right-hand side of

(42) is at least as large as the numerator on the right-hand side of (41) : Hence, x (�) = x (�) =)
dx(�)
d� � dx(�)

d� :

Proof of Lemma 6. I demonstrate that a¢ liation implies that (21) : Di¤erentiating (27)

and (28) I obtain

dx�

d�
=

(2� �)� f�( �j�)
f( �j�)

�
(1� �) F( �j�)

f( �j�)
� �

�f( �j�)

�
V 1xx (x

� (�))

and

dx�

d�
=
2� �� f�( �j�)

f( �j�)

h
(1� �) F ( �j�)f( �j�) +

�
(1��)f( �j�)

i
V 1xx (x

� (�))
:

Notice that at x (�) = x (�) ; the terms in brackets are equal to V 1x (x
� (�)) � � = V 1x (x� (�)) � �;

moreover, as the latter term in brackets is necessarily positive, the former one is positive too.

Hence, x (�) = x (�) =) dx(�)
d� > dx(�)

d� if and only if f�( �j�)
f( �j�) >

f�( �j�)
f( �j�)

; which is precisely the

a¢ liation assumption.

Proof of Lemma 7. To ease notation in this proof, I suppress the dependence of the solution

schedules on �:

Consider again the control problem spelled out in the proof of Lemma 4. The proof is organized

into three parts. In part i, I derive the solution for � � �0: In part ii, I derive the solution for

� > �0: In part iii, I show that the solution displays continuity at �0:

Part i: the solution for � � �0

I demonstrate that that for � � �0; the optimal schedule satis�es x (�) = x (�) = x� (�) and

x� (�) solves

V 1x (x
� (�))� � � (1� �) F (�)

f (�)
= 0: (43)

To see this, I can use the conditions for � (�) and � (�) and the equations of motion for these

costate variables to get

� (�) = � (�)�
�Z
�

� (�) d�

and

� (�) = � (�) +

�Z
�

� (�) d� :
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Substituting back into (37)

�
V 1x (x (�))� � � �qn � (1� �)

F (� j� )
f (� j� )

�
(1� �) f (� j� ) = �� (�) +

�Z
�

� (�) d�

 
V 1x (x (�))� � � (1� �)

F
�
�
��� �

f
�
�
��� �

!
�f
�
�
��� � = �� (�)�

�Z
�

� (�) d�

Note that x = x as � > 0 for � � �0: Adding the two conditions of optimality for the control

variables, and dividing by f (�) I get

V 1x (x
� (�))� � � (1� �) F (�)

f (�)
=
�� (�)� � (�)

f (�)
(44)

where I have used the fact that �F
�
�
��� �+ (1� �)F (� j� ) = F (�) :

To complete the argument I now argue that �� (�)� � (�) = 0: Since x (�) = x (�) = x� (�) for

� � �0; any solution of (44) for given �� (�) � � (�) satis�es constraint (17) : Moreover, � (�) and

� (�) have no in�uence on the value of the objective for � > �0; because the costate variables are

allowed to jump at points where the state variable constraint switches from binding to non-binding.

Moreover, � (�) and � (�) have no in�uence on the location of the switching point �0 either. Hence,

at the optimum � (�) and � (�) must be such that, conditional on �; the expected value of the

objective is maximized. Hence, � (�) = �� (�), and I obtain the expression in the Proposition.

Part ii: the solution for � > �0

For � > �0; � (�) = 0; so that � (�) = k and � (�) = k for � > �0: A priori it is neither clear how

k relates to k; nor is it clear how the values of the costate variables relate to �
�
�0
�
and �

�
�0
�
:

That is, there may be jumps in the costate variables at �0:

I �rst show that k + k = 0: To see this, consider a candidate pair of schedules that give rise

to a switch point �0: Clearly, for the subinterval
�
�0; �

�
; constraint (17) is binding only at �0: But

then, choosing the optimal schedules x (�) and x (�) on the subinterval
�
�0; �

�
is equivalent to the

isoperimetric problem (38) with �0 replacing �: Hence, k � k = �k:

Part iii: Continuity at the switch-point

I can write the value of the objective as

�
�
�0
�
=W 1

�
�0
�
+W 2

�
�0
�
� � (1� �)�; (45)

where

W 1
�
�0
�
� �

�0Z
�

B
�
x� (�) ; qn; �; �

�
f
�
�
��� � d� + (1� �) �0Z

�

B (x� (�) ; q0; �; �) f (� j� ) d�

37



and

W 2
�
�0
�
� �

�Z
�0

B
�
x (�) ; qn; �; �

�
f
�
�
��� � d� + (1� �) �Z

�0

B (x (�) ; q0; �; �) f (� j� ) d�

+k

0B@� + �Z
�0

x (y) dy �
�Z

�0

x (y) dy

1CA :
Clearly �0 must pass the following test: the value of the objective, �

�
�0
�
; should not increase

through a small change in �0: Invoking the envelope theorem, the e¤ect of a marginal change in �0

is

��0
�
�0
�
=W 1

�0
�
�0
�
+W 2

�0
�
�0
�

where

W 1
�0
�
�0
�
� �B

�
x�
�
�0
�
; qn; �

0; �
�
f
�
�0
��� � d� + (1� �)B �x� ��0� ; q0; �0; �� f ��0 j� �

and

W 2
�0
�
�0
�
= ��B

�
x
�
�0
�
; qn; �

0; �
�
f
�
�0
��� �� (1� �)B �x ��0� ; q0; �0; �� f ��0 j� � (46)

�k
�
x
�
�0
�
� x

�
�0
��

Clearly, at the optimum I must haveW 1
�0

�
�0
�
+W 2

�0

�
�0
�
= 0; so the values of the objectives evaluated

at the bound �0 must match. One solution is clearly reached when x
�
�0
�
= x

�
�0
�
= x�

�
�0
�
: I now

show this solution is unique.

To make the dependence of x
�
�0
�
and x

�
�0
�
on k explicit, I write these schedules as x

�
�0; k

�
=

x
�
�0; k

�
; respectively. A total di¤erentiation of the integral constraint

� +

�Z
�0

x (y; k) dy �
�Z

�0

x (y; k) dy = 0

delivers
dk

d�0
=

x
�
�0; k

�
� x

�
�0; k

�
�Z

�0

(xk (y; k)� xk (y; k)) dy

Recall from (39) and (40) in the proof of Proposition 2 that dx
dk > 0 and dx

dk < 0: Hence, the

denominator of the expression for dk
d�0 is positive. Hence, I have

dk
d�0 < 0 for x

�
�0; k

�
< x

�
�0; k

�
and dk

d�0 > 0 for x
�
�0; k

�
> x

�
�0; k

�
: Thus k is minimized when �0 is such that x

�
�0; k

�
= x

�
�0; k

�
:

Again using (39) and (40) ; for any other value of �0, I will have x
�
�0; k

�
> x

�
�0; k

�
: However, it
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is easy to see that the values

x̂ � argmax
x

��
V 1 (x)� �

�
f
�
�0 j�

�
� (1� �)F

�
�0 j�

�	
and

x̂ � argmax
x

��
V 1 (x)� �

�
f
�
�0
��� �� (1� �)F ��0 ��� �	

satisfy x̂ � x̂ due to a¢ liation. Hence, the sum of the terms in the �rst line in (46) decreases by

an increase in k: Moreover, �k
�
x
�
�0
�
� x

�
�0
��
becomes negative. Hence, there can be no other

solution.

Taken together these arguments imply the structure of the solution given in the Lemma.

Proof of Proposition 3. Complementing the proof of Lemma 7, I demonstrate that the

optimal value of � is zero.

It is easy to see that the derivative of (45) with respect to � is still given by

�� (�) = �� (1� �) + k; (47)

and the second derivative is still given by ��� = dk
d� whenever this is well de�ned: Letting x (�; k)

and x (�; k) denote the functions de�ned by (23) and (24) ; and using the fact that (17) is binding

at �0 (k) ; I have for any � > 0

dk

d�
=

1

�Z
�0(k)

(xk (y; k)� xk (y; k) dy) dy

< 0;

where I have used the fact that e¤ects of k on �0 (k) exactly cancel out as x
�
�0 (k) ; k

�
= x

�
�0 (k) ; k

�
:

Hence, the optimum features �� = 0 if k (�)j�=0 � � (1� �) and �� > 0 if k (�)j�=0 > � (1� �) :

Due to Lemmas 5 and 6, for � = 0; constraint (17) is binding at �; by convexity of the bunching

region, the constraint is binding for all �: Hence, when evaluating the derivative �� (�) at � = 0; I

can use the fact that x
�
�
�
= x

�
�
�
= x� (�) for � = 0: Hence, for � = � and � = 0; I can write (43)

in explicit form as �
V 1x
�
x�
�
�
��
� �
�
f
�
�
�
= (1� �) (48)

From (24) ; k (0) satis�es

�
V 1x
�
x�
�
�
��
� �
�
(1� �) f

�
� j�

�
� (1� �) = �� (1� �) + k (0) ;

Substituting from (48) ; we have

�
V 1x
�
x�
�
�
��
� �
�
(1� �) f

�
� j�

�
� (1� �) = �

�
V 1x
�
x�
�
�
��
� �
�
�f
�
�
��� �
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and thus

�� (0) = �
�
V 1x
�
x�
�
�
��
� �
�
�f
�
�
��� � < 0:
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