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Abstract
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markets. Contrary to a model involving only a vertical dimension (e.g, Burdett and
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1. Introduction

Finding a suitable match on the labor or marriage market is a complex task. Search
frictions in the market force agents to trade off the chance of meeting a better partner
in the future against the foregone utility due to staying single for a longer period
of time. Quality is determined by a number of traits and agents usually agree on
the ranking for a subset of the characteristics involved – the “vertical traits” – but
disagree with respect to others – the “horizontal traits”. In this paper, we study the
different roles of vertical and horizontal heterogeneity among agents in matching
models. The first parameter captures a discrete vertical dimension, for example
income. All agents agree on the ranking along this vertical dimension. The second
parameter represents a horizontal non-ordered characteristic. We refer to this trait
as “taste” to highlight that agents do not necessarily agree on the ranking of agents
along this dimension. Agents take the implications of both dimensions for their
individual utility into account when deciding on their search strategy. The central
aim of our paper is to employ a tractable model to analyze matching and sorting in
this environment assuming that utility is nontransferable.

Our analysis is motivated by two distinct but closely related strands of literature.
The first is the large empirical literature in economics and sociology documenting a
positive association between traits of partners in existing unions. For example, the
classic work by Becker (1973, 1974) finds a positive correlation between partners’
education levels and partners’ height. Kalmijn and van Tubergen (2006) provide
empirical evidence for a correlation between ethnicity, while Kalmijn (2006) and
Mare (1991) document assortative mating for religion and education. A more recent
and important finding in this literature is that consumption complementarities with
respect to horizontal traits, e.g, a shared interest in leisure activities, are becoming
more and more important sources of the marital surplus (Lundberg and Pollak 2007,
Lundberg 2011).

The second literature is the theoretical literature on two-sided search and matching.
The seminal work by Becker (1973) analyzes in a static transferable-utility model
how assortative mating arises in equilibrium. Starting from this basic model, a
huge literature has emerged that discusses how different assumptions with respect
to utility specifications, search frictions and heterogeneity change this outcome.1

However, in contrast to the empirical literature the discussion of heterogeneity is
centered on vertical traits.

1See Burdett and Coles (1999) for a survey of this literature.
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If agents differ only with respect to a vertical dimension, all agents agree on the
ranking of potential mates. Therefore, all individuals propose to the best available
agent. Depending on the level of search frictions, this most desirable agent chooses
the range of acceptable qualities. In this way, the boundary between the first and
second class is derived. Similarly, the highest agent in the second class sets a range
and hence creates the boundary between the third and second class (see, for example,
Burdett and Coles 1997). The procedure continues until the equilibrium is derived for
the whole range of the vertical trait. By contrast, since the agents in our model are
additionally marked by a horizontal characteristic, there is no common most desirable
agent. Although this complicates the analysis, our model and the corresponding
equilibrium characterization remain tractable.

The interaction of horizontal and vertical preferences reveals some new insights in this
strand of search and matching models. First, the model encompasses the prediction
of assortative mating from the pure vertical model. If the level of search frictions is
sufficiently low, the costs of rejecting offers are low. Therefore, agents, especially the
vertically “gifted”, are selective and this leads high type agents to reject low types.
This in turn generates positive assortativeness.

Second, all agents adjust continuously their optimal reservation utility strategies
in response to changing search frictions. This result seems particularly appealing
compared to the “classical” model involving only the vertical dimension. In such
a model agents might suffer from discrete reductions in expected utility if search
frictions cross some (more or less) arbitrary level while increasing marginally.

Third, depending on the model parameters, low type agents might benefit from
increasing search frictions. If the level of search frictions happens to be in such
a range, a higher level of search frictions has two effects. First, the frequency of
meeting potential partners is lower and this effect harms the agents. Second, the
probability that a high type accepts a low type increases, and this effect outweighs
the first effect.

Fourth, our analysis shows that both kind of matching equilibria, complete segregation
of types and integrating equilibria may emerge. Finally, we show that our approach
is general in the sense that it allows for (i) different utility specifications concerning
the two traits, (ii) different type distributions along the horizontal dimension as
well as (iii) for the number of vertical types. The analysis shows that extreme
utility specifications (only the vertical dimension or respectively the horizontal
dimension enters individual utility) are equivalent to a specification without vertical
heterogeneity at all.
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Our framework builds on the existing literature that deals with bilateral search and
matching. As mentioned above, the seminal static model by Becker (1973, 1974)
assumes that utility is transferable and that no search frictions are present. Recent
analyses in the area of vertical heterogeneity and transferable utility are Bloch and
Ryder (2000), Shimer and Smith (2000) and Atakan (2006). The papers that are
closer to our analysis are Burdett and Coles (1997), Eeckhout (1999) and Smith
(2006) who analyze vertical heterogeneity in a nontransferable utility model including
search frictions.

Clark (2007) studies bilateral sorting with horizontal heterogeneity in a frictionless
assignment model. We depart from Clark (2007) as in his model agents prefer similar
agents, but the trait considered for matching is ordinal, e.g. height. The taste
parameter in our model can be interpreted as agents’ location on a circle. This
standard approach in the Industrial Economics literature (Schmalensee 1978, Salop
1979) avoids end-point-effects. This assumption is also employed by Konrad and
Lommerud (2010) who study the interplay of matching and redistributive taxation
in a static model. In their model, agents are matched only for a single period in
which they have to either accept a match or stay single forever.

We proceed as follows. In the following section we develop the marriage model. In
the next section we solve for the equilibria in the model for one or two income-levels
and discuss the comparative statics of the approach. Section 4 provides an example
for specific income and taste distance functions. These permit an explicit model
solution. Section 5 discusses three extensions of the model. First, we introduce
weights for the two parts of utility into the model. This allows us to analyze the full
range between two polar cases: in the first polar case agents marry for love and in
the second they marry for money. Second, we introduce a reformulation that permits
one to choose almost any continuous probability distribution for the utility along
the horizontal dimension. Third, we show that our framework can be easily modified
to account for more than two income levels. Finally, we discuss the implication of
our analysis with respect to assortative matching. Section 6 concludes. All proofs
are relegated to the appendix.

2. The Model

There is a unit mass of individuals. Each individual i is characterized by two param-
eters (yi, ti) ∈ Y × T . The first parameter captures vertical ex-ante heterogeneity of
agents. For concreteness, we refer to this trait as income yi. We assume that there
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are two income levels such that yi ∈ Y = {yL, yH} with yH ≥ yL ≥ 0. The second
parameter ti captures horizontal heterogeneity and for concreteness we refer to it as
taste ti. We assume a continuum of taste parameters such that ti ∈ T = [0, 2].We
follow the common approach from the Industrial Economics literature introduced by
Schmalensee (1978) and Salop (1979), i.e. individuals are located around a circle of
circumference 2.2 This approach allows to avoid end point effects.3 We assume that
individuals are uniformly distributed on Y × T ; both income levels are equally likely
and the location on the circle for each agent is drawn independently of her income.

Preferences of all agents are identical regarding the relative locations of potential
partners to their own position. All agents prefer to be matched with partners of
higher income. With respect to the horizontal dimension agents prefer to be matched
with individuals of similar taste. If two agents i and j decide to marry each other,
both enjoy a utility gain depending on a measure of the distance between their
respective locations on the circle. Formally the distance in taste x between two
agents i and j is given by

x :=

 min{ti − tj, 2 + tj − ti}, if ti ≥ tj

min{tj − ti, 2 + ti − tj}, if ti < tj
.

Hence, the taste difference of two randomly drawn agents x is the realization of a
random variableX. Clearly, as both agents’ taste parameters are drawn independently
and are ex-ante uniformly distributed, the random variable X is uniformly distributed
on [0, 1].

Once a match is formed, individuals enjoy a utility flow depending on both partners’
incomes and the taste difference x for all subsequent periods.4 The utility function is
additively separable. One part of an agent’s utility is the gain induced by household
income. A second source of utility is the intra-marital gain through the difference, or
rather the similarity in taste. By this choice the two dimensions of utility generation
become substitutes for the agents. If agent i marries agent j her per-period-utility
equals

U(yi, ti, yj, tj) = f(yi, yj) + g(x),

where x is determined by the definition given above. Function f , which captures
2In contrast to Schmalensee (1978) and Salop (1979) we re-scale the circumference of the individual’s
location to 2. Hence, we have a maximum distance of 1 between two individuals on the circle.

3This differs from the approach by Clark (2007) who analyzes a model in which agents prefer
agents of similar height. In such a model agents with “extreme” (small or large) height behave
differently compared to agents with more common realizations.

4For simplification we assume that there is no divorce. This is a crucial assumption because agents
stop searching in our model once they are married.
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the part of agent i’s utility induced by the vertical trait income, is assumed to
be increasing in both arguments. Function g, which captures the (intra-marital)
utility gain through the horizontal trait, is assumed to be differentiable in (0, 1).
Furthermore, we assume g′ < 0, as agents prefer partners who are located closer
to themselves. We normalize g(1) = 0.5 As long as agent i stays single, her
per-period-utility depends only on her income yi and is given by

U(yi, ti) = f(yi, yi).6

This definition of a single agent’s utility reflects the idea that the marital surplus is
generated by consumption complementarities with respect to the horizontal dimension
(see, for example, Lundberg 2011). Furthermore, agent i’s utility derived from income
within marriage is only affected if she marries a partner with a different income level.
For ease of notation and reading the utility of a single agent is sometimes written as
f(yi,−) := f(yi, yi). We assume that marital surplus is not transferable.

The matching institution is characterized by search frictions, i.e. individuals face
difficulties finding a spouse, a job or in general any type of matching partner. As
commonly used in the matching literature with search frictions (e.g. Burdett and
Coles 1997), α denotes the arrival rate of potential partners where α is the parameter
of a Poisson process. The type of a potential partner j an individual i meets is
assumed to be independent of individual i’s type. If two singles meet, they first
observe each others’ traits and then decide either to propose to the other or to
continue searching. If both singles propose to each other, a match is formed and
the two singles leave the market forever, otherwise the agents continue searching.
Two individuals forming a match are replaced by (unmarried) clones. Hence, the
distribution of single agents is stationary across time. Future per-period utility flows
are discounted at rate r.7 Both the discount rate and the arrival rate of singles
determine the extent of the market, which we denote by θ := α/r.

A strategy of a (single) individual in this framework is a subset of all potential
partners for any point in time. Such a subset can be interpreted in the following
way: The subset contains all partners this particular individual would like to marry
and hence she would propose to at a certain point in time.8 Such a strategy of a

5This normalization implies that there are no negative utilities induced by the maximum taste
difference. This assumption does not affect the results qualitatively.

6Note that individual utility U is defined as a function of 4 arguments for married agents and as a
function of only 2 arguments when for single agents.

7The life-time-utility of an individual marrying someone with per-period-utility k at period 0
when using discount factor r is

∫∞
0 k · e−rtdt = k

r .
8Note that agents end their game when marrying another agent as there is no divorce and
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particular agent depends on her belief about the distribution of singles who propose
to her. In turn, her strategy determines the offer distribution which other singles
face. In equilibrium, beliefs and offer strategies must be compatible with each
other. For example, consider for a moment two types of agents, females and males.
Females have beliefs about the offers they receive from males and calculate a list of
acceptable males based on these beliefs. This determines the offer distribution of
females proposing to male agents. In equilibrium, females must have correct beliefs
about the offers they receive from males. Likewise, male singles must have correct
beliefs about the offers received by females.

In order to keep the model as tractable as possible, we focus entirely on a stationary
environment. To be more precise, we assume that individuals employ time-stationary
reservation utility strategies. We already noted that the distribution of singles is
stationary over time due to the cloning assumption. Since all other agents as well
employ time-stationary reservation utility strategies, the search problem of any
particular agent is in fact stationary. It is therefore optimal for an individual agent
to employ a stationary reservation utility strategy (Adachi 2003).

3. Optimal Search Policies

In the following, we first establish some intermediate results assuming that there is
no vertical heterogeneity. This step-wise presentation of the model allows to develop
an intuitive understanding of the effects due to horizontal heterogeneity. We will
then analyze to what extent these intermediate results generalize to the case of two
distinct income classes. Finally, we discuss comparative statics of the model.

3.1. No vertical heterogeneity

In this section we analyze agents’ strategies and the resulting equilibria assuming
that there is no vertical heterogeneity. Hence, all agents in the marriage market
have the same income yH = yL ≡ y. As introduced above, the taste parameter t is
distributed uniformly on T = [0, 2]. The taste parameter can be interpreted as the
location of the respective agent on a circle with circumference 2.

Since the income-specific part of agents’ utility is unaffected by marriage, single agents
effectively condition their proposals to other singles only on taste. Furthermore, when
choosing their optimal strategies, agents take the search frictions of the matching

consequently there are no strategic considerations for married agents.
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institution into account. When agents have an offer at hand, they balance the
possibility of receiving a better offer in future periods against the foregone utility
due to staying single and continue searching.

The optimal strategy of an individual i is determined by using a dynamic programming
approach. Agents maximize their expected lifetime utility Vi by choosing optimally
the partners they would propose to.9 For the next short time period ∆, lifetime
utility Vi consists of three parts. First, for the duration of ∆ the agent stays single
and obtains ∆f(y,−). For the second term, let αi denote the arrival rate of singles
who are proposing to agent i. Moreover, let H−i(x) denote the probability that the
difference in taste of a proposing agent is equal to x or less. Then, over this time
interval of ∆ she receives at least one proposal with probability ∆αi. In this case
the individual decides whether to accept or reject the proposal. Obviously, she will
only accept proposals which yield a higher lifetime utility than Vi. Formally, utility
resulting from a union with an agent of taste x exceeds Vi; (f(y, y) + g(x))/r > Vi.
The third and last term of Vi captures the unlucky event that the agent did not meet
anyone proposing to her in the time span of ∆ and is stuck with her lifetime utility
Vi.

Collecting terms and discounting yields

Vi = 1
1 + ∆r

[
∆f(y,−)+∆αiE−i

(
max

{
Vi,

f(y, y) + g(x)
r

})
+(1−∆αi)Vi

]
+o(∆)

(1)

where agent i applies the expectation operator on the distribution of taste differences
associated with the set of single agents proposing to her. Note that we follow
the convention to subscript the expectations operator according to the respective
random variable. Since agent i applies the expectation operator on taste difference
x ∼ H−i(x), it is denoted as E−i. The o-function captures the small probability
events of meeting more than one individual in time span ∆. Rearranging equation
(1) and letting ∆→ 0 yields

rVi = f(y,−) + αi
r
E−i (max {0, f(y, y) + g(x)− rVi}) . (2)

As agents apply time-stationary reservation utility strategies and g(·) is decreasing in
the taste difference x, equation (2) reveals that this corresponds to a cut-off strategy
with respect to taste. Each individual i sets a certain minimal quality standard x̄i

9Burdett and Coles (1999) provide an introduction to the dynamic programming approach and a
survey of the literature on search and matching.
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Figure 1: Geometry of the One-Circle-Model

on her future partner and accepts proposals if and only if x ≤ x̄i. We will refer to
such strategies as reservation quality strategies. By this observation we restrict the
further analysis to strategies of this type.

Rearranging equation (2) yields the following description of the agents’ strategies:

Lemma 1 Reservation utility strategies

Given the expected distribution of offers by other agents H−i(x), agent i proposes to
all singles with x ≤ x̄i where either

1. rVi = f(y, y) + g(x̄i) and

rVi = f(y,−) + αi
r

x̄i∫
0

(g (x)− g (x̄i)) dH−i(x) (3)

or

2. rVi < f(y, y) + g(x̄i), H−i(x̄i) = 1 and

rVi = f(y,−) + αi
r
E−i (f(y, y) + g(x)− rVi) . (4)

Lemma 1 implicitly characterizes agent i’s optimally chosen subset of acceptable
agents, given her beliefs about the distribution of offers by other singles and about
the search frictions in the market. In the first case agent i is decisive in the sense that
she selects only a subset of all available offers. In the second case she is restricted by
the offers made to her and is willing to accept all of them.

Figure 1 describes the type space and agent i’s strategy. As there is only one income
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level, all agents are located on one circle. Agent i is located on the very left. The
thick line in the figure represents agent i’s cut-off-strategy. The partners she is
willing to accept are symmetrically located around her own position. The offers
agent i receives are not depicted in the figure. If agent i is decisive, it follows from
Lemma 1 that she is indifferent between marrying and staying single when meeting
the proposing agents j or k. If she is not decisive, agents j and i will not propose to
agent i. In that case H−i(x̄i) = 1 and agent i accepts all agents who propose to her.

Equilibrium

Lemma 1 states that the set of acceptable partners can be characterized as a uniform
distribution with strictly positive support. That is, agent i accepts all individuals
with x ∈ [0, x̄i]. Note that this formulation is silent about the offer distribution
H−i(x). However, we will focus on symmetric equilibria in the sense that the offer
distributions and acceptance sets are identical across agents. Hence, we rule out that
the density h−i is zero for some parameter range, while agent i’s acceptance region
is strictly positive on the full support. In the following µi denotes the fraction of
singles who will propose to agent i on contact. The focus on symmetric equilibria is
motivated by the fact that all agents are ex-ante symmetric in the sense that they
have the same income level y and that they are distributed uniformly on the circle.
Hence, there is ceteris paribus no agent who prefers moving to a different location.

The focus on symmetric equilibria implies that any agent i is decisive in the sense of
the first part of Lemma 1, which allows us to rewrite equation (2) as

rVi = f(y,−) + αµ−i
r

x̄i∫
0

(g(x)− g(x̄i))h−i(x)dx. (5)

The offer distribution is strictly positive on the full support and individuals are located
uniformly on the circle. Therefore, the offer distribution is a uniform distribution
with associated density h−i(x) = 1/µ−i. Inserting this density into equation (5)
yields10

rVi = f(y,−) + θ

 x̄i∫
0

g(x)dx− x̄g(x̄)
 . (6)

10Note that
x̄∫
0
g(x)− g(x̄)dx =

x̄∫
0
g(x)dx− x̄g(x̄).
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Furthermore, the first part of Lemma 1 yields

rVi = f(y, y) + g(x̄i). (7)

Equilibrium requires that equation (6) and equation (7) are satisfied for any agent i.
By construction of the model, Vi is the maximum value of lifetime utility for each
agent i. Hence, all agents face the same decision problem and will apply the same
cut-off-value x̄ = x̄i and receive the same lifetime utility Vi = V . Rewriting equations
(6) and (7) yields the solution for the equilibrium that we summarize in the following
proposition.

Proposition 1 Equilibrium without vertical heterogeneity
In equilibrium, all agents marry the first single who yields at least the reservation
utility rV , where rV is characterized by:

(I) rV = f(y, y) + g(x̄)

(II) rV = f(y,−) + θ

[
x̄∫
0
g(x)dx− x̄g(x̄)

]

Proposition 1 fully characterizes the two unknown parameters (x̄ and V ) for a given
extent of the market θ.11 For ease of exposition, we will mainly discuss the features
of the model in terms of the quality x̄. The following corollary summarizes the main
properties.

Corollary 1 Properties of the reservation quality

11We can easily rewrite the model to a setup with two sets of agents, say females and males. In
this case let i ∈ {w,m} denote women and men respectively. The reservation utility for females
and males is given by

rVw = f(y,−) + αµm
r

x̄w∫
0

(g(x)− g(x̄w))hm(x)dx (8)

and

rVm = f(y,−) + αµw
r

x̄m∫
0

(g(x)− g(x̄m))hw(x)dx (9)

respectively. In equilibrium the arrival rate of offers µm and the conditional taste distribution
Hm(x) must be consistent with male agents’ reservation strategy defined by equation (9).
Likewise, Hw(x) and µw must be consistent with females’ strategy given by equation (8).
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1. The reservation quality x̄ is characterized by

g(x̄) = θ

 x̄∫
0

g(x)dx− x̄g(x̄)
 . (10)

2. The reservation quality x̄ is decreasing in θ and we have

lim
θ→0

x̄ = 1 and lim
θ→∞

x̄ = 0.

As there is no intra-marital income redistribution, the reservation quality is unaffected
by the income level y. In general, all agents prefer to be matched with singles of
similar taste, as such matches yield the largest utility gain. An extent θ close to
zero implies that there are maximum search frictions in the market.12 In this case
all singles set x̄ to the maximum and accept the first single they encounter. On the
other hand, a large extent θ implies that singles can easily meet each other or that
they are very patient. For θ →∞ there are no search frictions, and every agent will
“wait” (for a time span of zero) for her perfect match. This corresponds to the perfect
assortative mating results in previous models without search frictions, e.g. Becker
(1973). However, this “notion of assortative mating” differs from the usual definition
of assortative mating, as the taste parameter is not an ordinal measure. Assortative
mating can be defined with respect to correlation between spouses’ location on the
circle. If search frictions are absent, agents complete mating only with individuals
of the same taste parameter. Hence, there is perfect correlation between partners’
location. For maximum search fractions there is no correlation between spouses’
taste parameters. For intermediate levels of search frictions, the correlation with
respect to taste is decreasing in the level of search frictions.

3.2. Introducing vertical heterogeneity (“Two circles”)

In this section we introduce vertical heterogeneity into the model. Therefore we
drop the assumption of a single income level and consider two income levels yH > yL.
These two income levels are equally likely in the population. As before, the taste
parameter t is distributed uniformly on T = [0, 2] and is drawn independently of an
agent’s income. By this specification we have two different types of agents: High
type agents with high income yH and low type agents with low income yL. Whenever
it is necessary to distinguish between one particular agent and types of agents, we
12This is due to the normalization g(1) = 0. Otherwise agents would accept only those partners

who are associated with a non-negative marital surplus.
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denote individuals by small letters and types by capital letters.

Contrary to the case of a single income level, agent i takes into account possible
intra-marital income redistribution as f(yi, yH) > f(yi, yL). As before, we solve for
the symmetric equilibrium of the extended model. Once again agents balance waiting
costs and the foregone utility of marrying a mediocre partner. When evaluating
possible partners, both characteristics are to some extent substitutes: Agents may
be willing to accept lower income for a better match in taste and vice versa.

In principle, we derive lifetime utility of a particular agent analogously to equation
(1). However, each agent now faces two different offer distributions: Offers received
from high type agents and offers from low type agents. For high type agents who are
willing to marry agent i who has income yi, let HH

−i(xH |yi) denote the cumulative
probability that the difference in taste is equal to xH or less. Analogously, we define
HL
−i(xL|yi) and xL for low types.13 Let αHi denote the probability that agent i

contacts a high type single who is willing to marry her. Likewise, let αLi denote the
probability that she contacts a low type single who is willing to marry her. As in
the case without vertical heterogeneity, agents employ reservation utility strategies.
Using the definitions so far, we can extend equation (1) to account for the two types.
Hence, expected discounted lifetime utility of agent i is given by

(11)

Vi = 1
1 + ∆r

[
∆f(yi,−)

+ ∆(αHi + αLi )
(∑

K

αKi
αHi + αLi

EK
−i

(
max

{
Vi,

f(yi, yK) + g(xK)
r

}))

+ (1−∆(αHi + αLi ))Vi
]

+ o(∆)

where K ∈ {H,L}.

Rearranging equation (11) and letting ∆→ 0 yields

rVi = f(yi,−) +
∑
K

αKi
r
EK
−i (max {0, f(yi, yK) + g(xK)− rVi}) . (12)

Equation (12) implies that agent i optimally chooses cut-off-values with respect to the
difference in taste. In particular, agent i now calculates two reservation taste levels
x̄i(·) depending on the income type of proposing agents. Analogously to Lemma 1,
we characterize the reservation-utility strategies as follows:
13To stress that the offer distribution of agent i is fundamentally determined by her income type

yi, we write HK−i(·|yi) instead of the (rather correct) HK−i(·) for K ∈ {H,L}.
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Lemma 2 Reservation utility strategies for two income levels

Given the expected distribution of offers by other agents HK
−i (xK |yi) where K ∈

{H,L}, agent i uses a reservation taste strategy and accepts all agents with x ≤ x̄i(yK)
where either

1. rVi = f(yi, yK) + g(x̄i(yK)) and

rVi = f(yi,−) +
∑
K

αKi
r

x̄i(yK)∫
0

(g (xK)− g(x̄i (yK))) dHK
−i (xK |yi) (13)

or

2. rVi < f(yi, yK) + g(x̄i(yK)), HK
−i(x̄i(yK)) = 1 and

rVi = f(yi,−) +
∑
K

αKi
r
EK
−i (f(yi, yK) + g(xK)− rVi) . (14)

Equilibrium

As in the previous section we focus on symmetric equilibria. All agents with the
same income are ex-ante identical due to our assumptions on the distributions of
individuals’ traits. But compared to the case without vertical heterogeneity, there are
now two different types of agents, high types and low types. By imposing symmetry
on the equilibrium outcome we require that agents of the same income type apply
the same strategies.

While the solution for the model without vertical heterogeneity is characterized by
two equations for the two endogenous variables V and x̄, there are now in principle
6 endogenous variables. These are the expected discounted lifetime utilities for both
high and low type agents (VH and VL) and the reservation qualities for type K1 agents
proposing to type K2 agents. The reservation qualities are denoted by xK1K2 , where
K1, K2 ∈ {H,L}. For example, the least acceptable agent for high types proposing
to low types is denoted by xHL.

Figure 2 shows the basic geometry of the model. There are two income levels yH > yL

and hence agents are located on two circles. Agents are distributed uniformly on
the two circles, while the fraction of high and low type agents is equal. For example,
agent i is assumed to have high income yH and is located to the very left. For any
given offer distributions from high and respectively low types, her best response is
a cut-off-strategy. The figure depicts the two reservation qualities xHH and xHL.
As partners with high income are more attractive compared to their low income
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Figure 2: Geometry of the Two-Circles-Model

counterparts (with identical taste), agent i is less selective among rich types, i.e. we
have xHH ≥ xHL.

As a first step in solving the equilibrium, the set of initially six relevant unknown
variables is reduced. A simple observation shows that in equilibrium high types will
have a higher reservation utility than low types, that is we have VH > VL. Suppose
to the contrary they would have a lower reservation utility than their low type
counterparts. Then, a high type could deviate to the strategy of a low type. As she
is even more attractive than the low type due to her income, she receives at least
as many offers as the low type agents. Hence, her utility stemming from possible
future marriages is at least as high as a low type’s utility from marriage events (as
all agents use reservation utility strategies). In addition, her utility associated with
staying single is higher. This shows that in equilibrium we must have VH > VL as
yH > yL. Consequently, high types are more selective with respect to low types than
low types are with respect to high types. Thus, we have xHL ≤ xLH . This implies
that xLH does not matter for equilibrium considerations, as low type agents are not
decisive for mixed marriages.

Depending on the level of search frictions two distinct types of equilibria emerge;
equilibria with and respectively without income segregation. To understand the
mechanism that drives this result, assume that the extent of the market is very large
(θ →∞). Intuitively, in this case a high type agent would even reject a poor type
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who has the same taste as her. That is, an agent with characteristics (yH , ti) rejects
the agent with characteristics (yL, ti) because of intra-marital income redistribution.
Hence, high type agents generally reject low type agents and an income segregation
equilibrium emerges. Only below a certain threshold θ̃, high type agents will consider
marrying low type agents. For all extents θ above this threshold the equilibrium
solution exhibits xHH > 0 and xHL = 0. We will discuss the characteristics of θ̃ after
establishing the complete solution for the two types of equilibria.

We start the equilibrium analysis with the case θ < θ̃, where mixed marriages
occur in equilibrium. First, we look at the equilibrium strategy of a high type
agent i. As mentioned above, all agents apply reservation-utility strategies and we
focus on symmetric equilibria. Hence, both acceptance and offer distributions are
characterized by a non-degenerate density function with strictly positive support.
Furthermore, as xHL ≤ xLH , we know that a high type agent i is decisive. Let
HK
−i(xK |yH) denote the offer distributions of agents of type K ∈ {H,L}, where µK−i

denotes the fraction of type K-singles who are willing to marry agent i on contact.
As both high and low types are equally likely, this implies that agent i faces an arrival
rate of 0.5αµH−i from high types and respectively 0.5αµL−i from low types. Exploiting
the decisiveness of agent i, we apply the first part of Lemma 2 which yields

(15)rVi = f(yi,−) +
∑
K

0.5αµK−i
r

x̄i(yK)∫
0

(g (xK)− g(x̄i (yK))) dHK
−i (xK |yi) .

Similar to the derivation involving only a single income level, the relevant densities
are hK−i(xK |yi) = 1/µK−i. Since agent i is a high type, we employ the type-based
notation for high types and rewrite equation (15) as follows

(16)rVH = f(yH ,−) + 1
2θ
 xHH∫

0

g(x)dx+
xHL∫
0

g(x)dx− g(xHL)xHL − g(xHL)xHL

 .
Applying once more agent i’s decisiveness, the first part of Lemma 2 yields:

rVH = f(yH , yH) + g(xHH) (17)

rVH = f(yH , yL) + g(xHL) (18)

The three equations (16), (17) and (18) provide a full characterization of the first
three variables of the model VH , xHH and xHL. Equations (17) and (18) provide a
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further intuitive insight as

g(xHL)− g(xHH) = f(yH , yH)− f(yH , yL).

This result shows that under any specification of search frictions a high type agent
“requires” from low type agents a better match with respect to taste. More specifically,
this compensation is a constant defined through the utility specification. The
difference between the reservation qualities measured in g equals the income loss due
to redistribution.

Now, we turn to the solution for a low type agent j. Recall that xLH ≥ xHL, as high
types are decisive for mixed marriages. Hence, employing once again the symmetry
argument, agent j is only decisive within other poor agents. Consequently, we employ
both parts of Lemma 2 to calculate the reservation utility for agent j. For low types
proposing to agent j, part (i) of Lemma 2 applies, while part (ii) is suitable for high
types proposing to agent j. Collecting terms yields

(19)
rVj = f(yj,−) +

αHj
r
EH
−j (f(yj, yH) + g(x̄j(yH))− rVj)

+
αLj
r

x̄j(yL)∫
0

(g (xL)− g(x̄j (yL))) dHL
−j (xL|yj) .

The fact that high types are decisive for mixed marriages permits a step-wise
equilibrium derivation. The reservation utility strategies for any high type agent i is
already determined. This includes the threshold quality xHL. Hence, the fraction of
high type agents proposing to low type agents µH−j is given and equal to xHL. This
simplifies the arrival rate of offers from high types to αHj = 0.5αxHL. Furthermore,
the density of HL

−j (xL|yj) is hL−j = 1/µL−j.

For a low type agent j, the reservation utility with respect to other low types is by
Lemma 2

rVL = f(yL, yL) + g(xLL). (20)

Using these simplifications and exploiting the type-based notation, equation (19)
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simplifies to

(21)
rVL = f(yL,−) + 1

2
α

r
xHL [f(yL, yH) + E (g(x) | x ≤ xHL)− f(yL, yL)− g(xLL)]

+ 1
2
α

r

 xLL∫
0

g(x)dx− xLLg(xLL)
 .

This completes the equilibrium solution. The following proposition collects the
relevant equations and summarizes the results for θ < θ̃.

Proposition 2 Integration equilibrium

The solution for the five unknown endogenous variables is characterized by the
following system of equations:

(I) rVH = f(yH , yH) + g(xHH)

(II) rVH = f(yH , yL) + g(xHL)

(III) rVH = f(yH , yH) + 1
2
α

r

 xHH∫
0

g(x)dx+
xHL∫
0

g(x)dx−xHHg(xHH)−xHLg(xHL)


(IV ) rVL = f(yL, yL) + g(xLL)

(V ) rVL = f(yL, yL)+ 1
2
α

r
xHL [f(yL, yH)+E (g(x) | x ≤ xHL)−f(yL, yL)−g(xLL)]

+ 1
2
α

r

 xLL∫
0

g(x)dx− xLLg(xLL)


Equation (III) of the solution captures the standard reservation equation for high
type agents. It implies that the flow value of search rVH is equal to the current payoff
f(yH ,−) = f(yH , yH) plus the expected surplus generated by the optimal search
strategy. This optimal strategy is given by xHH and xHL. Equations (I) and (II)
show another standard reservation strategy result: High agents must be indifferent
between searching further and marrying the (optimally chosen) least acceptable
partner among high types (in taste distance xHH) and among low types (in taste
distance xHL). In addition the two equations capture the constraints for this strategy
discussed above; that is high type agents require compensation along the horizontal
dimension from low type agents.

Equation (V) describes the standard reservation equation for low type agents. Since
low type agents are not decisive for mixed marriages, they treat xHL essentially
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as given. Therefore, the first bracket of the right hand side can be interpreted as
the current payoff including a stochastic component generated by possible mixed
marriages. The second bracket equals the expected surplus from choosing the optimal
reservation quality within their own types. Low types have only one decision variable
and hence equation (IV) completes the solution. This equation describes the usual
indifference condition and is comparable to equations (I) and (II).

As mentioned above, the fact that high types are decisive for mixed marriages permits
a step-wise solution for the equilibrium. Low types take the high types’ decisions
in equilibrium as given and optimize actively only within their own types. This
property has simplified the derivation of Proposition 2, and the extensions section of
this paper shows how this concept generalizes to any (discrete) number of agents.

We now turn to the case θ > θ̃. In this case search frictions are low such that
high types are selective and reject offers from low types. As a result, the two
classes endogenously partition themselves into two classes and choose the threshold
quality within their own class. Therefore, there are no mixed marriages and we can
immediately apply the results from the case without vertical heterogeneity.

To solve for the symmetric equilibrium we use Proposition 1 for the two types of
agents separately. Compared to the case without vertical heterogeneity in section 2,
we have to adjust the arrival rate of offers. Since both types are equally likely and
the assumptions with respect to random matching still hold, the adjusted arrival rate
is now 0.5α. The following proposition summarizes the results for the segregation
equilibrium:

Proposition 3 Segregation equilibrium

The solution for the three endogenous variables is characterized by the following
system of equations:

g(x̄) = θ

2

 x̄∫
0

g(x)dx− x̄g(x̄)


rVH = f(yH , yH) + g(x̄)

rVL = f(yL, yL) + g(x̄)

The first equation characterizes the reservation quality xLL = xHH = x̄. Both agents
use the same reservation quality, because there are no mixed marriages and hence
there is no intra-marital income redistribution. But clearly, the utilities of either
type differ according to the different income levels. This can be seen in Proposition
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3 as f(yH , yH) > f(yL, yL).

Finally, we solve for the critical level of search frictions θ̃ that separates the integration
equilibria from the segregation equilibria. When the level of search frictions is equal
to θ̃, a high type agent is indifferent between accepting the best available low type
agent and the optimally chosen high type agent. Hence, equations (I) and (II) from
Proposition 2 yield

f(yH , yH) + g(xHH) = f(yH , yL) + g(0). (22)

As equation (22) shows, the threshold extent translates directly into a reservation
quality among high types x̃HH . Setting xHL = 0 in equation (III) from Proposition
2 yields this threshold reservation quality x̃HH . It is easy to show that this equation
and the first equation from Proposition 3 coincide for xHL = 0. Hence, the threshold
extent is well-defined. This completes the solution.

Properties of the solution

In the following we discuss some properties with respect to the solution of the general
model with vertical heterogeneity and provide some intuition for the results developed
so far. The relevant exogenous parameter for equilibrium behavior is the extent θ.
We therefore write particular endogenous variables of the model as functions of the
extent θ and discuss properties of the equilibrium solution with respect to changes
in θ.

We start the discussion with some continuity properties of the solution:

Proposition 4 Continuity Properties

The reservation qualities xHH(θ), xHL(θ) and xLL(θ) are continuous in θ ∈ R+.

The continuity for θ 6= θ̃ is straightforward as the optimal cut-off strategies are
adjusted smoothly by the agents. When search frictions increase (θ decreases)
starting from θ̃, high type agents start sending offers to low types. The possible
utility gains with respect to the horizontal dimension are distributed in a continuous
way on the two circles. Therefore, there is continuity for the reservation utility
strategies of high type agents with respect to changes in θ.

From the perspective of low types, the first proposals from high types slightly below
θ̃ start with probability zero. This probability increases continuously if θ decreases
further. Hence, the reservation utility of low types is not affected in a discontinuous
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manner. It follows that there is no discontinuity in their offer behavior within their
own types.

Finally, for the reservation quality that high types require from low types we have
already established that xHL = 0 and hence continuity is obvious.

The continuity property distinguishes our model from the dynamic search models
involving only vertical heterogeneity. For example, the approaches by Burdett and
Coles (1997), Eeckhout (1999) and Smith (2006) share the common feature that
agents partition themselves into a certain number of classes. In equilibrium, all
agents within a particular class obtain identical (reservation) utilities. Search frictions
mainly influence the size of these classes. Intuitively, the partitioning into distinct
classes allows agents to pool with other agents within their class. The best available
agent within this class is the agent whose vertical characteristic is equal to the upper
bound of the interval characterizing the highest class. All agents below the best
available agent benefit from pooling with this agent, because they face the same
probability of receiving an offer from such an agent.

However, with respect to the example above, some agents might drop out of the
highest class when search frictions increase. The agents who drop out and move to the
second highest class are suddenly not decisive for marriages with class-1-agents. This
change happens when search friction marginally increase starting at some threshold.
Hence, the reservation utility of these agents sharply drops. This generates a
discontinuity which seems to be rather questionable from an applied perspective.
Our approach results in a continuous adjusting of reservation utility strategies. This
is driven by the fact that agents are at least decisive for some marriages within
their own vertical class. In effect, they adjust strategies continuously whenever
search frictions decrease.14 Moreover, agents with different vertical traits always
have different lifetime utilities.

We proceed by analyzing the limiting behavior of the different reservation qualities:

Proposition 5 Limiting Properties

The limiting behavior of the reservation qualities is as follows:

a) limθ→0 xHH(θ) = 1, limθ→0 xLL(θ) = 1 and limθ→0 xHL(θ) is given by g(xHL) =
f(yH , yH)− f(yH , yL).

b) limθ→∞ xHH(θ) = 0, limθ→∞ xLL(θ) = 0

14This feature of our model is not driven by reducing the number of (vertical) types to two. We
will return to this point when we extend the model to the N -type case.
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The first part of Proposition 5 covers the case of maximum search frictions. The
normalization g(x) ≥ 0 implies that agents (weakly) prefer to marry any partner of
their own class rather than staying single. Since x ∈ [0, 1], the limiting threshold
quality for maximum search friction is equal to one.

As a high type faces redistributional losses when marrying a low type, she is only
willing to marry low type agents who compensate her for this loss. This holds as
well for maximum search frictions and explains the limiting behavior of xHL(θ).

The second part of Proposition 5 is straightforward. In a market without search
frictions complete segregation emerges. Every agent sets her required minimum
quality to the maximum as she meets all agents instantaneously.

We now discuss the differentiability properties that we summarize as follows:

Proposition 6 Differentiability Properties

a) Reservation quality xLL(θ) is differentiable for all θ ∈ R+ \ θ̃ and is not
differentiable in θ̃.

b) Reservation quality xHH(θ) is differentiable for all θ ∈ R+ and is decreasing in
θ.

c) Reservation quality xHL(θ) is differentiable for all θ ∈ R+ \ θ̃ and is non-
increasing in θ.

Once again, the properties for θ 6= θ̃ are straightforward. Agents smoothly adjust
their reservation utility strategies in response to a small change in search frictions.

By contrast, around θ̃ only xHH is differentiable. When search frictions increase
(θ decreases) beyond θ̃, high types start proposing to low type agents. Contrary
to low types, high types are decisive. As marriages with low types start out as a
probability zero event, high types do not need to adjust the rate of their proposals to
other high types when search frictions increase. Hence, the solution for xHH exhibits
differentiability in θ̃.

In general, reservation qualities xHL and xLL are not differentiable in θ̃. For an extent
slightly below θ̃, low types receive offers from high types with a positive probability.
Low type agents receive a larger utility gain from these offers than from the least
acceptable partner within their own class. Since the low types are not decisive for
these mixed marriages, one can interpret the possibility of marrying a high type as a
new opportunity which happens by chance. Since low types correct their reservation
quality for these lucky events, their reservation quality is not differentiable in θ̃. An
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example which illustrates this is discussed in section 4. The example also shows that
low types may even benefit from higher search frictions because of these lucky events.

3.3. Comparative Statics

As the agents do not agree on the ranking with respect to the horizontal dimension,
the type of equilibrium may change if weights are introduced. To analyze this
question, we now introduce weights that capture the idea that –for example– a
population is more concerned about potential spouses’ taste than spouses’ income.

In particular, let β ∈ (0, 1) denote the weight for the income-related payoff and let
1− β be the weight on taste-related utility. Agent i’s utility if married to agent j is
then defined as

U(yi, ti, yj, tj) = βf(yi, yj) + (1− β)g(x),

where x is the taste difference as before.15 The limiting cases β → 0 and β → 1
describe agents who are “romantically minded” or “greedy for money” respectively.16

First note that these weights do not change the general analysis at all. As utility
is ordinal, we can simply transform the utility function by dividing with weight β.
This transformed utility function is

Ũ(yi, ti, yj, tj) = f(yi, yj) + g̃(x) with g̃(x) = (1− β)
β

g(x).

As g̃ is decreasing and g̃(1) = 0, the transformed utility Ũ meets all requirements
for the utility specification, that are discussed in section 2. Hence, the analysis does
not change and replacing g by g̃ in Proposition 1 yields the solution for the case
without vertical heterogeneity. Likewise, Proposition 2 and Proposition 3 implicitly
characterize the solution for the integration and segregation equilibria respectively.

In the following, we discuss the comparative statics for the reservation qualities
associated with the limiting cases β → 0 and β → 1. By equations (I) and (II) of
Proposition 2, the critical market extent θ̃, that divides the integration equilibrium
from the segregation equilibrium (where xHL = 0), is implicitly defined by

β(f(yH , yH)− f(yH , yL)) = (1− β)(g(0)− g(xHH)). (23)

Note that the critical market extent is well defined by inserting the modified utility
15Hence, there is now only one additional normalization required; as before we assume g(1) = 0.

Once again, this assumption is only for the sake of simplicity and could be replaced by constant.
16We stick to the assumption that all agents have the same utility function.
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specification into equation (22). As before, equation (23) yields an expression for
xHH at the critical market extent θ̃. Clearly, an increase of β requires a higher
threshold xHH at θ̃ as g is decreasing in x. What are the implications for θ̃? From
the previous analysis we know that the high types’ reservation qualities are increasing
in θ, i.e. the lower the search frictions (increasing θ) the lower the taste difference
for the least acceptable partners (e.g. x̄ is decreasing). Hence, this shows that higher
values of β are associated with smaller values of the critical market extent θ̃.

Using this result, it is straightforward to show that the integration equilibrium does
not exist for values of β beyond an upper bound β̃. Note that the right-hand-side of
equation (23) captures the maximum possible gain along the horizontal dimension
relative to the least acceptable high type partner. It is bounded by (1− β)g(0) as
g(1) = 0. Recall that the left-hand-side of this equation describes the income loss
for the high type agent due to intra-marital redistribution when marrying a low
type. If this loss exceeds the maximum possible gain with respect to the horizontal
dimension, high type agents reject any low type agents. Since the maximum gain
equals g(0), the upper bound for β is characterized by the following inequality

β(f(yH , yH)− f(yH , yL)) > (1− β)g(0).

Rearranging shows that for

β > β̃ := g(0)
f(yH , yH)− f(yH , yL) + g(0)

high types will reject low type agents for all values of θ.

It remains to discuss the optimal strategy of high and low types within their own
class. Since there is no intra-marital redistribution for these marriages, the two types
of agents apply the same cut-off-value with respect to taste. To summarize, for

β > β̃

low and high types optimize in separate spheres. The equilibrium is fully characterized
by inserting g̃(x) and xHL = 0 into Proposition 3. Once again, since complete
segregation emerges, the arrival rate of potential partners who have the same income
equals α/2. Finally, note that 0 < β̃ < 1.

Obviously, decreasing β is associated with larger values of θ̃. In the limiting case,
income becomes irrelevant for the agents’ decision problem as in the case without
vertical heterogeneity. Hence, the functions xHH , xHL and xLL converge pointwisely
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to the same function which is the one-circle solution for an arrival rate of α.

In sum, we have established two results. First, assigning weights to the two parts
of the utility function does not change the analysis. The solution is obtained by a
simple reformulation of the variables. More interestingly, for both limiting cases the
resulting model solution can be derived by exploiting the available results for the
case without vertical heterogeneity. However, the critical threshold θ̃ differs across
the two limiting cases.

The reasoning for the two limiting cases is also quite different. Intuitively, for large
values of β only high types are acceptable for a high type. Hence, low types are stuck
with each other and this leads to complete segregation. Since the markets of low
and high type agents are divided into two separate parts, the arrival rate of offers
is equal to 0.5α. Hence, the reservation qualities for this case can be obtained by
inserting this modified arrival rate into the one-circle-solution. By contrast, for low
values of β income is not very important and in the limiting case (β → 0) income
does not affect agents’ decisions. In this case both low and high type agents are
basically identical. Hence, the result converges to the one-circle solution with the
original arrival rate α.

4. An Example

We now illustrate the mechanics of the model by a particularly simple example that
permits the derivation of an explicit solution. First, we assume that utility derived
from the vertical dimension is equal to the average household income if agents are
married. As before, single agents’ utility equals their own income. Formally, we
specify f(·, ·) as follows:

f(yH , yH) = f(yH ,−) = yH (24)

f(yH , yL) = f(yL, yH) = yH + yL
2 (25)

f(yL, yL) = f(yL,−) = yL (26)

This assumption might be interpreted as full income pooling. Both spouses receive
the same income share independently of their contributed shares to household income.
With respect to the taste dimension, we assume that utility is decreasing in the
simple linear distance. Formally, we have

g(x) = 1− x.
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Clearly, this specification is in line with the set of assumptions from the previous
section. Inserting these functions into Propositions 2 and 3 yields the explicit solution
as follows:

Corollary 2 Explicit solution for the example

a) For θ ≤ θ̃ an integration equilibrium emerges, where the five unknown endoge-
nous variables VH , VL, xHH , xHL and xLL are characterized by the following
system of equations:

(Ia) rVH = yH + 1− xHH
(IIa) rVH = yH + yL

2 + 1− xHL

(IIIa) rVH = yH + 1
4θ
[
x2
HH + x2

HL

]
(IV a) rVL = yL + 1− xLL
(V a) rVL = yL + 1

2θxHL
[
yH − yL

2 + xLL −
xHL

2

]
+ 1

4θx
2
LL

b) For θ > θ̃ a segregation equilibrium emerges, where the three unknown en-
dogenous variables VH , VL and x̄ are characterized by the following system of
equations:

(Ib) x̄ = 2
θ
· (
√

1 + θ − 1)

(IIb) rVH = yH + 1− x̄

(IIIb) rVL = yL + 1− x̄

c) The threshold extent θ̃ is given by

θ̃ = 82− (yH − yL)
(yH − yL)2 . (27)

To simplify the discussion further, we choose explicit values for the two income levels
and the discount rate and present the model solution graphically. In particular, we
use yH = 1 and yL = 0.25. Agents discount future utility with r = 0.05.17

Figure 3 depicts the reservation qualities xHH(θ), xHL(θ) and xLL(θ) for the spec-
ification given above. For a market extent above θ̃ the solution exhibits complete
17We set incomes and the discount rate r to specific values to simplify the example as much as

possible. This implies that the figure shows the reservation qualities for different values of α.
Since the qualitative findings are independent of specific values of r, we denote all functions as
functions depending on θ.
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Figure 3: Reservation qualities

segregation. In this case there are no mixed couples and xHL(θ) = 0. The two reser-
vation qualities for high types within themselves and for low types within themselves
coincide as established by Proposition 3. As discussed, there are no mixed couples,
and intra-marital redistribution does not play a role. Therefore, agents condition
their proposals within their own type only on taste and x̄ is identical for both types.
In the limit (θ →∞) the two reservation qualities xHH(θ) and xLL(θ) converge to
zero. This is because an infinite market extent implies that all agents meet each
other instantaneously.

For θ ≤ θ̃ integration equilibria emerge. For values around θ̃, the three reservation
qualities clearly exhibit the continuity and differentiability properties discussed in
the previous section. What happens if search frictions increase further such that
θ approaches zero? First note that equations (IIa) and (IIIa) of Corollary 2 imply
xHH − xHL = yH−yL

2 . This distance is the “compensation” in taste required by high
type agents from low type agents for the income loss due to redistribution. By the
assumptions with respect to g(·), this distance is constant (3

8). Hence, in the figure
xHL(θ) and xHH(θ) are parallel functions for θ ≤ θ̃.

For maximum search frictions (θ close to zero) the reservation qualities xHH and xLL
converge to one. In this case all agents propose to any agent within their own class.
This result is driven by the normalization g(1) = 0 that states that agents weakly
prefer marrying any agent from the same class rather that staying single forever. As
discussed, an important feature of the model is that high type agents do not accept
all low type agents. In general, the value for xHL(0) can be obtained from part a) of
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Figure 4: Lifetime utilities

Proposition 5. In this specific example, we have xHL(0) = 1− yH−yL
2 = 5

8 .

A notable feature is that for a certain range of θ the reservation quality within low
type agents is decreasing in θ. That is, although the probability of meeting other low
type agents increases, low agents are less selective within their own class. Intuitively,
the decisive high type agents reduce the set of acceptable low type partners if the
market extent increases. As a consequence low type agents realize that the lucky
event of being matched to a high type becomes more unlikely. Hence, in this range
they get less choosy regarding low types although market conditions improve.

Figure 4 highlights the consequences of this feature on agents’ lifetime utilities. For
the aforementioned range of θ < θ̃ low type agents would be better off if the extent
of the market shrinks slightly. This is driven by the positive probability of being
matched with a high type. Low type agents prefer these mixed matches, because
they marry a partner with similar taste and a high income. By contrast, high type
agents dislike the income reduction through redistribution and would always prefer
lower search frictions.

As briefly discussed in the previous section, the continuity properties with respect to
agents’ lifetime utilities seem to be desirable features. When agents differ only with
respect to a vertical characteristic (e.g. Burdett and Coles 1997), they endogenously
partition themselves into distinct classes in equilibrium. Within each class all agents
obtain the same lifetime utility. Search frictions affect the size of these classes, and
agents’ experience discrete jumps in their lifetime utility, whenever they drop from
one of the classes.
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The presence of the second horizontal dimension allows high types to reduce contin-
uously their offers to lower types when search frictions decrease. Low type agents
adjust their reaction to this reduction in the offer distribution continuously, and
the overall effect for low types’ expected utility is the sum of two effects. The first,
direct, effect of decreasing search frictions leads to meeting potential partners more
often. The second, indirect, effect might cause agents to be more selective when
deciding on whom to propose to. The example documents a case when the second
effect is larger than the first. For values near θ̃, the net effect of decreasing search
frictions is a reduction of low types’ lifetime utility.18

5. Extensions and Discussion

In this section we want to show that the model results are robust to relaxing two
specific assumptions. The first extension deals with the restriction to two types
of agents. We show that the method for solving the model works for any discrete
number for the types of agents. Second, we relax the assumption that the payoff
with respect to taste is a function of the distance between the two agents’ positions.
Although it is intuitive and convenient to discuss the payoff in terms of positions on
the circle and the resulting distance, it is not necessary.

5.1. More than two types of income

In the previous sections we have analyzed the case of at most two discrete levels of
income and horizontal heterogeneity. A central assumption regarding the horizontal
dimension is symmetry in payoffs, that is both spouses receive exactly the same
noneconomic gain when married (cf. Konrad and Lommerud 2010). This symmetry
allows us to partially apply results known from the model involving only a vertical
dimension (e.g. Burdett and Coles 1997). In particular, this symmetry implies
that the high type agent is decisive for mixed marriages. Hence, in equilibrium all
low-type agents who receive offers from a particular high type agent also propose
to this agent. This observation is crucial, as it allows to use a step-wise approach
to solve for the equilibrium. In the two-type model, low types take the high type’s
equilibrium behavior essentially as given and perform a conditional maximization. In
the following, we will exploit this idea to establish an integration equilibrium for N
discrete income levels y1 < y2 < ... < yN . In this extended model each type except

18Clearly, only agents who are not decisive concerning potentially formed marriages may suffer
from decreased search frictions.
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the lowest type will be decisive concerning agents with lower vertical traits. Once
again, we denote individuals by small letters and income classes with capital letters
if a distinction seems helpful. For the following let J = {1, 2, ..., N}.

Let αJi denote the probability that agent i contacts a single of type J who is willing
to marry her. Generally, we denote the cumulative probability that the distance of
an agent of type J who is willing to marry individual i as HJ

−i(xJ |yi). In general,
there are N different types of agents proposing to individual i and hence the lifetime
utility is determined by

(28)

Vi = 1
1 + ∆r

[
∆f(yi,−)

+ ∆
(∑

J

αJi

)(∑
K

αKi∑
J α

J
i

EK
−i

(
max

{
Vi,

f(yi, yK) + g(xK)
r

}))

+ (1−∆(
∑
J

αJi ))Vi
]

+ o(∆).

For given offer distributions, we could now reformulate Lemma 2 to describe the
reservation utility strategies for the case of N different income levels. However, as
the reasoning is identical we proceed directly to equilibrium behavior.

For each type of agent J there is one reservation utility level VJ . Furthermore, each
type of agent J has N different reservation qualities concerning partners from every
potential type of agent. Hence, there are N + 1 unknowns for each type of agent
which sum up to N · (N + 1) unknowns to describe individuals’ equilibrium strategies
completely.

As before matches are formed only by mutual agreements. Exactly as in the two type
model, higher types have higher reservation utilities. Hence they are the decisive
players when agents of different income levels propose to each other. It follows that
the amount of unknowns capturing equilibrium behavior can be reduced to those
relevant for the formation of matches. As Type N agents are the highest type in the
market, they are always decisive. Therefore, there are N binding reservation quality
equations associated with type N agents. We call these “decisiveness equations” in
the following. An agent of type N − 1 is decisive concerning all lower types and
her own type which yields N − 1 relevant decisiveness equations. In general, there
are J decisiveness equations associated with an agent of type J . Additionally, there
are N unknowns concerning the reservation utilities. Thus, the equilibrium is fully
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described by this set of collectively

N +
∑
J

J = N + N · (N + 1)
2

unknowns.

As noted above, we want to proceed directly to the equilibrium solution. For the two-
type model, exploiting Lemma 2 provides two equations describing the equilibrium
values for the two reservation utilities. Modifying these computations to the present
case yields N equations describing the N reservation utilities. Furthermore, each
type combination between two individuals of types K and respectively L where
K ≥ L yields an additional equation of the form

rVK − f(yK , yL) = g(xK(yL)).

There are N equations concerning the reservation utilities. For each K ≥ L there
are K additional equations. Adding up yields

N +
∑
J

J = N + N · (N + 1)
2

equations in total which equals the number of unknowns. Hence, this system of
equations characterizes the equilibrium solution. Once again, without specifying the
distance and payoff functions, no explicit derivations can be offered.

Depending on the parametrization, the resulting equilibrium may exhibit segregation
as well as integration outcomes with respect to the N types of agents. Let xKL denote
the least acceptable L-type-agent from the perspective of K-type-agents. Hence,
whenever a K-type-agent meets an L-type agent of quality xKL, she is indifferent
between staying single or marrying this agent. The following proposition summarizes
the system of equations for high search frictions in the sense that even the highest
(N) type is willing to marry some agents of the lowest type19:

Proposition 7 Complete integration equilibrium

The solution for the N + N ·(N+1)
2 unknown endogenous variables is characterized by

a system of two types of equations.

Decisiveness equations:
rVK = f(yK , yL) + g(xKL) for all K ≥ L

19Clearly, by the fact that reservation utility is increasing in type and all agents apply reservation
utility strategies, this implies that all types of agents are possibly matched in equilibrium.
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Reservation utility equations:

rVK = f(yK ,−)

+ 1
N

α

r

 N∑
L=K+1

xLK [f(yK , yL) + E (g(x) | x ≤ xLK)− f(yK , yK)− g(xKK)


+ 1
N

α

r

K∑
L=1

 xKL∫
0

g(x)− g(xKL)dx)


In general, depending on the extent of the market, there emerge all intermediate
equilibria between the perfect integration equilibria discussed in Proposition 7 and the
perfect segregation equilibria. We do not provide solutions for all these intermediate
cases. The method to construct these cases is clear from the discussion above, while
writing down all possible cases is lengthy and involves bulky notation.

5.2. Different distribution for taste-related payoff

The assumption that the payoff with respect to taste is ex-ante uniformly distributed is
restrictive at first glance. We now argue that the present model solution encompasses
the analysis for a large range of continuous distribution functions.

Note that the utility gain along the horizontal dimension is interpreted as a result
from two steps. First, individuals are distributed uniformly on a circle. Second,
agents are randomly matched to each other. In general, there are many ways to
define utility depending on the two positions of the spouses; e.g. in a marriage
market model with men and women the utility induced by taste could be determined
solely through the location of the woman. The central idea of our model is that
agents prefer to be matched with agents who are horizontally close to themselves.
Therefore, an obvious choice for linking location and the resulting taste-related payoff
is the distance x between the two locations. In the model we consider a very general
measure of distance, namely g(x).

Since agents are randomly matched to each other and the taste (location) parameter
t is uniformly distributed on [0, 2], the distance X of two randomly matched agents
is uniformly distributed on [0, 1]. However, the solution method and the general form
of g allow for a wide range of random variables capturing the taste-related payoff.
The following proposition establishes this result:

Proposition 8 Possible distributions for match-specific values
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Let X ∼ U [0, 1]. Let HZ(z) denote the cumulative distribution function of a random
variable Z where Z has finite support [a, b] ⊂ R. Choosing a utility specification
g(x) := b−H−1

Z (x) for the taste-related utility gain is equivalent to solving the model
with Z ∼ HZ(z) and g(z) = b− z.

Proposition 8 shows that the assumption of the uniform distribution for the taste-
related payoff (distance) is not restrictive. The payoff can follow any continuous
probability distribution that has finite support. Hence, there are virtually no
restrictions concerning the distribution of match-specific values. As before, the
distance b− z is just a normalization which implies that agents are never matched
to individuals who would yield a negative payoff along the taste dimension. As in
the untransformed model we could easily allow negative payoffs.

6. Conclusion

This article analyzes how matching and sorting takes place when individuals are
characterized by both vertical and horizontal ex-ante heterogeneity. Our dynamic
model assumes that search frictions are present in the market and that utility is
nontransferable. Along the vertical dimension all individuals agree on the ranking
of agents and prefer to be matched with the highest agent. This vertical trait can
therefore be interpreted as income, wealth or even beauty. Unlike in most of the
search-theoretic literature, the horizontal dimension considered here is not ordered.
It captures inputs which are not equally ranked across agents. Possible examples
are regional preferences concerning a job or sharing hobbies with the spouse. The
analysis for our definition of horizontal heterogeneity20 is quite different from the
more common assumption of preferring similar characteristics along an ordered trait
like height (e.g. Clark 2007).21

One appealing result is that the reservation-utility strategies are continuous in
the market extent. By contrast, in the typical vertical model (e.g. Burdett and
Coles 1997) the strategies and the corresponding expected lifetime utilities are not
continuous. Our result is driven by the fact that agents are able to condition their
offers on both dimensions. If the search frictions are large enough, high-type agents
start sending offers to low-type agents. When the extent of the market is exactly at
20Konrad and Lommerud (2010) employ such a definition of horizontal heterogeneity and analyze

the implications of redistributive taxation in a static one-period model.
21In these models the probability of being matched is usually not independent of the location. For

example, if agents prefer partners of similar height, individuals in the middle of the distribution
have higher chances of meeting an appropriate partner.
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this threshold, high-type agents propose only to the low-type agent who yields the
largest horizontal payoff. When search frictions increase further, high-type agents
expand continuously the set of acceptable low-type agents. Low-type agents are
decisive only within low-types and choose optimally the range of acceptable payoff
with respect to the horizontal trait.

Driven by this continuity property, we can identify ranges of search frictions where
the direct (positive) effect of decreasing search frictions is outweighed by the indirect
(negative) effect for every type of agent (except the highest). In most cases, agents
reduce their set of acceptable partners within their own class when search frictions
decrease and hence are better off. However, for low-type agents this relation reverses
for certain ranges of search frictions. For these particular ranges the probability for
mixed matches is elevated when search frictions increase. If the payoff of low types
generated by pooling with the high type is sufficiently high, this effect outweighs the
negative effect of meeting less potential partners.

Finally, the approach to tackle the issue of horizontal heterogeneity in the presented
way seems appropriate for a handful of reasons. The model is generalizable in many
kind of ways. The weights assigned to the utilities from the two traits are not a
restriction as long as utility remains additively separable. The payoff derived from
the horizontal trait can follow any continuous probability distribution that has finite
support. The number of types in the vertical dimension can be increased to an
arbitrary natural number.

There are several routes for future research. For simplicity, it is assumed that
individuals who leave the market are immediately replaced by clones. Introducing
different inflow and outflow specifications should lead to multiple equilibria for a
given extent of the market. Another important assumption is the symmetry of the
horizontal dimension. This ensures that both agents in a match always receive the
same gain along the horizontal dimension. This in turn implies that high-type agents
are decisive for mixed matches and considerably simplifies the extension to N discrete
income levels.
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A. Appendix

Proof of Lemma 1

From equation (2) we know that an agent accepts all proposals which yield her a
higher utility than staying single, i.e. agent i accepts if and only if

rVi ≤ f(y, y) + g(x). (29)

In general, there are two cases to distinguish: In the first case agent i does not
accept all proposals which she faces. Thereby, she accepts all proposals up to the
taste difference where she is indifferent between marriage and staying single. This
determines her reservation quality x̄i which is then given by

rVi = f(y, y) + g(x̄i). (30)

Using equation (30) we can reformulate the right-hand-side of equation (2). This
yields

rVi = f(y,−) + αi
r

x̄i∫
0

(g (x)− g (x̄i)) dH−i(x).

In the second case the agent accepts every proposal she faces. The agent would be
even willing to accept agents whose location is beyond the taste difference of x̄i, but
these individuals do not propose to her. Formally, we have

rVi < f(y, y) + g(x̄i) and H−i(x̄i) = 1

as every offer is accepted. Furthermore, as the agent always marries when she faces
a proposal the maximum operator from equation (2) simplifies and one gets

rVi = f(y,−) + αi
r
E−i (f(y, y) + g(x)− rVi) .

Proof of Proposition 1

The derivations of the equations are shown in the text. For the equilibrium property
of this characterization we still have to show that the strategies of the agents generate
a consistent offer distribution for a particular agent. As every agent decides to propose
to all other agents within taste distance x̄ by the symmetry of agent’s distance to
each other all proposals are accepted. If agents calculate this best response on the
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belief on the offer distributions that all other agents play the strategy described in
the proposition, then choices and expectations are consistent with each other.

Proof of Corollary 1

The first part simply follows by equations (I) and (II) from Proposition 1 and recalling
the utility definition f(y,−) = f(y, y).

For the second part let

F (θ, x(θ)) := θ

 x̄∫
0

g(x)dx− x̄g(x̄)
− g(x̄).

Using the implicit function theorem we establish that x̄ is decreasing in extent θ as

dx̄

dθ
= −

(
dF

dx̄

)−1

· dF
dθ

= −

x̄∫
0
g(x)dx− x̄g(x̄)

θ(g(x̄)− g(x̄)− x̄g′(x̄))− g′(x)

=

x̄∫
0
g(x)dx− x̄g(x̄)

g′(x)(1 + θx̄) < 0.

The last sign holds as the numerator is positive due to g′ < 0 and the denominator is
negative for the same reason. Hence, we get dx̄/dθ < 0, i.e. the reservation quality
required by the agents is increasing in the extent of the market.

It remains to show the limiting behavior of x̄. Letting θ → 0 and finding a solution to
equation (10) is equivalent to solving g(x̄) = 0 which yields x̄ = 1. The considerations
for θ →∞ are similar. We have to find x̄ which fulfills

g(x̄) = θ

 x̄∫
0

g(x)dx− x̄g(x̄)
 .

For given θ we can choose x̄ arbitrarily close to 0 such that the right-hand-side is
arbitrarily close to zero, whereas the left-hand-side still yields a finite value. Hence,
this equation has always a solution. Furthermore, as the right-hand-side is increasing
in θ, we have that limθ→∞ x̄(θ) = 0.

Proof of Lemma 2

This is a direct generalization of the proof from Lemma 1. The rest follows directly
from the text.
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Proof of Proposition 2

The proof follows directly from the text.

Proof of Proposition 3

The proof follows directly from the text and from Proposition 1.

Proof of Proposition 4

First note that xHL(θ̃) = 0, which we will use at some points throughout the proof.

First, we consider the continuity of xHH(θ). The continuity for θ ∈ R+ \ {θ̃} can be
seen directly from the equation system (I)-(V) of the integration equilibrium given
in Proposition 2 and the expression g(x̄) from the income segregation equilibrium
given in Proposition 3. For the case of θ = θ̃ equating (I) and (III) together with
xHL(θ̃) = 0 yields

g(xHH) = θ

2

 xHH∫
0

g(x)dx− xHHg(xHH)
 .

Hence, this solution for xHH at θ̃ coincides with the solution of g(x̄) of the segregation
equilibrium. Since the solution is the same on both sides of θ̃ we have continuity for
xHH for all θ ∈ R+.

Now we analyze xLL(θ). The continuity for θ ∈ R+ \ {θ̃} can be seen directly from
the equation system (I)-(V) of the integration equilibrium given in Proposition 2 and
the expression g(x̄) from the income segregation equilibrium given in Proposition 3.
For the case of θ = θ̃ equating (IV) and (V) together with xHL(θ̃) = 0 yields

g(xLL) = θ

2

 xLL∫
0

g(x)dx− xLLg(xLL)
 .

Hence, this solution for xHL at θ̃ coincides with the solution of g(x̄) of the segregation
equilibrium. Since the solution is the same on both sides of θ̃ we have continuity for
xLL for all θ ∈ R+.

Finally, we analyze xHL(θ). The continuity of xHL for all θ ∈ (0, θ̃) follows directly
from the equation system (I)-(V). For θ > θ̃ we have xHL ≡ 0. Hence, as xHL is zero
per definition at θ̃ we have continuity for all θ ∈ R+.

Proof of Proposition 5
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a) Let θ = 0. By equations (I) and (III) from Proposition 2 we get g(xHH) = 0. By
the definition of g this yields limθ→0 xHH(θ) = 1. The same argument for equations
(IV) and (V) from Proposition 2 shows limθ→0 xLL(θ) = 1. Furthermore, by equating
(I) and (II) from Proposition 2 one gets that the difference between least acceptable
partners (measured in g) is a constant:

g(xHL)− g(xHH) = f(yH , yH)− f(yH , yL) (31)

We already know for θ → 0 we have g(xHH) = 0. Using this in equation (31) shows
the last claim from part (a).

b) For θ → ∞ we have complete segregation and hence Corollary 1 applies. This
completes the proof.

Proof of Proposition 6

By Proposition 2 and Proposition 3 the differentiability of reservation qualities
xLL, xHH and xHL for all θ ∈ R+ \ θ̃ is obvious. The only thing which remains to be
shown is the differentiability of xHH in θ̃.

For reasons of simplicity we analyze the system of equations given in Proposition
2 and Proposition 3 as functions of the market extent α instead of θ; the latter
definition of market extent is just a transformation by the constant discount factor r.
By the implicit functions theorem the left- and the right-hand-side derivatives of the
reservation quality of the high type among her own class determine as

lim
Θ↗Θ̃

∂xHH
∂α

= lim
Θ↘Θ̃

∂xHH
∂α

=

xHH∫
0
g(x)dx− xHHg(xHH)

g′(xHH)(2r + xHHα) .

Hence, xHH is differentiable in R+. Furthermore, the analysis of the derivatives shows
easily, that the reservation qualities xHH and xHL are decreasing resp. non-increasing
everywhere.

Proof of Corollary 2

All stated equations are the results of calculations using the formula given in Propo-
sition 2 for part a) and Proposition 3 for part b).

It only remains to calculate threshold extent θ̃. From equation (22) it is clear that
at θ̃ we have

yH + 1− xHH = yH + yL
2 + 1⇔ xHH = yH − yL

2 .
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By Proposition 4 we know that xHH(θ) is continuous at θ̃ and hence, using equation
(Ib) at θ̃ it must hold that

yH − yL
2 = 2

θ̃
(
√

1 + θ̃ − 1).

Solving this for θ̃ yields
θ̃ = 82− (yH − yL)

(yH − yL)2 .

This completes the proof.

Proof of Proposition 8

So far, distance X is uniformly distributed on [0, 1]. Therefore, we have F (x) =
P (X ≤ x) = x. Let Z be another random variable with finite support [a, b] ⊂ R with
HZ(z) = P (Z ≤ z) denoting the corresponding cumulative distribution function and
associated quantile function H−1

Z (q). Let Y denote the random variable obtained
from transforming X according to Y := H−1

Z (X).

For the distribution of Y we then have:

P (Y ≤ y) = P (H−1
Z (X) ≤ y) = P (HZ(H−1

Z (X)) ≤ HZ(y))

= P (X ≤ HZ(y)) = HZ(y).

Hence, the associated cumulative distribution to random variable Y is function HZ .

We transform the distance as follows with function g(x) = b−H−1(x). Solving this
model is the same as solving the previous untransformed model with taste payoff
g(z) = b− z and Z ∼ HZ(z).

Proof of Proposition 7

The proof follows directly from the text.
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