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Abstract

Mechanisms where intermediaries charge a commission fee and have the sellers
set the price are widely used in practice e.g. by real estate agents, stock brokers, art
galleries, or auction houses. In this paper we analyze such fee setting mechanisms,
and we model competition between intermediaries in a dynamic random matching
model, where in every period a buyer, a seller, and an intermediary are randomly
matched. In any period, every intermediary has a temporary monopoly and de-
signs an exchange mechanism that maximizes his own expected profits. Traders’
valuations for the indivisible good depend on their option value of future trade.
The following results obtain. First, we show that the intermediary can achieve
the highest possible profit with a fee setting mechanism, and we characterize when
these fees are linear. Second, fee setting is an equilibrium outcome in a dynamic
market. Third, when the rematching probability increases or, equivalently, the pe-
riod length decreases, the equilibrium fees become smaller. Fourth, our model can
explain, or is consistent with, several of the stylized facts observed in real estate
brokerage, such as the 6 percent fee, the invariance of the mechanism employed
within the industry with respect to the number of active intermediaries, the rela-
tion between listing price and time on market, inefficient free entry, higher prices
for houses owned by brokers, and home owners who bought during a boom asking
higher prices.
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1 Introduction

Many markets are organized by intermediaries, and many of these intermediaries neither

buy nor sell the goods whose exchange they enable. Instead they set percentage fees to

be levied on the price, which is subsequently set by the seller. Buyers then either accept

or reject the price. If the mechanism involves an auction where the seller sets a reserve

price, the buyers bid in the auction, and the fee is levied on the realized price. We call

such mechanisms “fee setting mechanisms”.

Real estate brokers, stock brokers, art galleries, and auction houses or auction sites

are just a few examples of fee setting intermediaries. Real estate brokers in the U.S.

typically charge 5 to 6 percent. Commission fees by art galleries are said to be in the

range of 30 to 50 percent. The auction houses Sotheby’s and Christie’s use a regressive

fee structure and so does eBay.1 Other industries where fee setting mechanisms are

frequently used include stock brokerage, share-cropping in agriculture , contracts between

authors and publishing companies, and retailers that charge a percentage on the revenue

a manufacturer generates with his product. Similarly, electronic payment systems and

credit cards charge percentage fees. Percentage fees are also used in a slightly different

environment in investment banking2 and by labor market intermediaries, in particular

by head hunters.

As a matter of fact, industries where fee setting mechanisms are predominantly used

1The marginal rate at Sotheby’s is 25 percent for items with prices up to USD 20,000, 25 percent
between USD 20,000 and USD 500,000 and 12 percent beyond. At eBay (ebay.com, accessed on May
5, 2008) the marginal fee on the closing price is 8.75 percent below USD 25, 3.5 percent between USD
25 and USD 1000, and 1.5 percent above USD 1000. Sotheby’s and Christie’s used a linear fee of 20
percent prior to being investigated by U.S. Department of Justice, convicted for collusive behavior, and
induced to change the fee structure.
Similarly, real estate brokerage has come under scrutiny by the U.S. Department of Justice (DOJ, 2007).
There is a widespread, though rarely explicit, suspicion that in particular the almost complete invariance
of broker commission fees reflects collusive behavior by intermediaries.

2Underwriters on initial public offerings in the U.S. charge in most cases exactly 7 percent, see Chen
and Ritter (2000).
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are quite sizeable. For example, the sales generated by Sotheby’s in 2007 alone exceeded

USD 4 billions.3 The annual operating revenue of eBay was more than USD 7.5 billion

in 2007, and Christie’s annual sales in 2006 exceeded USD 4.5 billion.4 The real estate

brokerage industry in the U.S. generates annual sales beyond USD 1000 billion and

commission fees of more than USD 60 billion per year.5 Credit card companies are

big business, too. For example, MasterCard’s annual revenue in 2007 exceeded USD 4

billion.6

Despite their widespread use and economic significance, fee setting mechanisms have

received very little attention in the theoretical economic literature. In particular, no prior

analysis of the optimality of fee setting and the structure of fees from a mechanism design

perspective exists.7 The purpose of this paper is to start filling this gap and to improve

economists’ understanding what determines whether intermediaries set commission fees

and, if they choose to do so, what determines the size and form of these fees.8

Our paper makes two main contributions. First, we set up a dynamic random match-

ing model with a continuum of buyers, sellers and intermediaries, and we derive the

exchange mechanism of every intermediary as the endogenous outcome of a mechanism

design problem that depends on the distributions of the types of buyers and sellers which

are, in turn, endogenous to the choice of mechanisms by all intermediaries. Our second

3See Sotheby’s Annual Report 2007, p.28, available at Sothebys.com. The fee structure was reported
in the New York Times (2008).

4See www.marketwatch.com and www.sgallery.net, respectively.
5See Rutherford, Springer, and Yavas (2005).
6MasterCard Worldwide, Annual Report 2007.
7The fact that, to the best of our knowledge, no name for this type of mechanism exists only

goes to show how little theoretical interest these mechanisms have received. Two papers that provide
explanations of when intermediaries may use percentage fees and when they set prices are Hagiu (2006)
and Yavas (1992). Hagiu’s argument relies on the presence and nature of network externalities, while
Yavas’ explanation depends on the presence and working of search markets.

8That said, this means also that we do not aim to explain why intermediaries emerge in equilibrium
(as do e.g. Gehrig (1993); Spulber (1999); Rust and Hall (2003)). Rather, we take the existence
and importance of intermediated exchange as given and ask why (some) intermediaries use fee setting
mechanisms. Empirically the predominance of intermediation we presume in this paper is on solid
ground. For example, real estate brokers account for approximately 80 percent of all single-family
dwellings in the U.S. (see Rutherford, Springer, and Yavas, 2005). A rather simple explanation for the
exclusivity of trade through intermediaries is that there is an alternative search market where traders
meet directly, but search costs are prohibitively high. Alternatively, it should be possible to extend
the framework by a search market as an outside option. Traders’ willingness to pay an intermediary is
limited by the outside option of going to the search market.
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contribution, which can be seen as a by-product to the first, is that we analyze and char-

acterize fee setting mechanisms in the one period model. The following is a sketch of the

dynamic model. Buyers and sellers have private information about their valuations for

an indivisible homogeneous good. In every period one buyer, one seller, and one interme-

diary are randomly matched. Intermediaries are free to choose the trading mechanism

anew in every period. The equilibrium mechanism used by the intermediaries in the mar-

ket determines the option value of future trade and hence the endogenous reservation

values of buyers and sellers. The distributions of these values in turn determine the best

response mechanism of an intermediary. We focus on a steady state equilibrium where

every intermediary uses the same stationary mechanism. We show that this model per-

mits an analytical solution for certain cases. Interestingly, the equilibrium mechanism

does not vary with the number of intermediaries under standard assumptions on the

matching technology. The equilibrium fees become smaller as the matching frequency

increases, or equivalently the period length between subsequent rematchings decreases.

Moreover, we derive empirically testable predictions, such as the implied time goods stay

on the market as a function of their prices, the distribution of prices on the market, and

the probability that a good is ever sold.

The intuition for the intermediaries’ equilibrium choice of mechanism stems from the

one period model, where a monopolistic intermediary is matched to one buyer and one

seller.9 Assume for simplicity that the mechanism design problem is regular, i.e. the

buyer’s virtual valuation and the seller’s virtual cost are increasing everywhere. Then

the mechanism that is optimal for the intermediary induces trade between the seller and

the buyer if and only if the seller’s virtual cost is less than the buyer’s virtual valuation.10

A fee setting mechanism is thus intermediary optimal if it induces a seller of a given cost

type to set a price that is accepted by the buyer if and only if the buyer’s virtual valuation

exceeds his virtual cost. Such a fee setting mechanism exists. Moreover, this fee setting

mechanism has the desirable properties of having an essentially unique equilibrium and

of making payments to the seller and requiring payments from the buyer only if they

9

10If the problem is not regular, insert the word ’ironed’ in front of ’virtual’ in the last phrase. For
more on the ironing procedure see e.g. Myerson (1981) or Appendix C below.



1 INTRODUCTION 5

actually trade. In the dynamic model a fee setting mechanism is still optimal for every

intermediary, but now the fee depends on the distributions of reservation values that

arise endogenously from the choice of mechanisms by all intermediaries. With many

buyers whose valuations are i.i.d. draws and one seller, a fee setting mechanism followed

by an optimal auction (such as used by eBay, Sotheby’s or Christie’s) is intermediary

optimal.

The dynamic model admits various extensions. We study inefficient free entry by

intermediaries whose opportunity costs of entry and levels of ability may be heteroge-

neous. Under the assumption that power distributions are a good approximation, the

model also allows for costs of intermediation that vary with transactions. We also show

that in the dynamic model a vertically integrated intermediary (who is also a seller) may

charge a higher price than an independent seller, thereby providing an explanation for

empirical observations (see Levitt and Syverson (2008) and Rutherford, Springer, and

Yavas (2005)). Furthermore, we show that price posting by the intermediary is not op-

timal for the intermediary in a static setup with one buyer and one seller, but becomes

intermediary optimal in a dynamic setup if the good in question can be stored without

cost. Last, we show that slotting allowances, i.e. the practice of retailers to first auction

off scarce shelf space to a producer and then charging a percentage fee on the revenue

generated by the producer, can be interpreted as an intermediary optimal mechanism.

Our paper contributes to the large and growing literature on intermediation such as

Gehrig (1993), Yavas (1992, 1996), Hackett (1992), Spulber (1996, 1999, 2008), Wood-

ers (1997), Rust and Hall (2003), Duffie, Garleau, and Peddersen (2005), Loertscher

(2007) and Burani (2008) by adding a mechanism design perspective to the notion of

(dynamic) random matching present in most of these papers. Apart from Myerson and

Satterthwaite (1983) the only articles applying mechanism design to intermediation we

are aware of are Spulber (1988) and Matros and Zapechelnyuk (2006). Our paper differs

from these papers by having dynamic random matching, multiple competing sellers and

intermediaries, and predictions on price dispersion, fee structures, and time on market.

Our paper also relates to the literature on bilateral trade with private information initi-

ated by Myerson and Satterthwaite (1983) and Chatterjee and Samuelson (1983). That
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a fee setting mechanism is intermediary optimal, has an essentially unique equilibrium

and induces payments only from and to agents who actually trade, is interesting on its

own. It provides a practical counterpart to the direct, and therefore abstract, interme-

diary optimal mechanism derived by Myerson and Satterthwaite. We show also that an

appropriately chosen fee mechanism is an ex ante efficient mechanism.11

As we add intermediaries to a dynamic random matching model with incomplete

information similar to Satterthwaite and Shneyerov (2007, 2008) and Atakan (2006b) it

also relates to this strand of literature.12 Insofar as the intermediaries in our dynamic

model are competing mechanism designers, the paper is related to the work of McAfee

(1993), Peters and Severinov (1997, 2006), and Damianov (2005) who study mechanism

design by sellers whereas in our model the mechanisms are chosen by intermediaries.13

In that respect, and because real estate brokerage is an industry to which our model

applies, the paper also contributes to the literature on real estate economics. Most of

the literature analyzing real estate brokerage remains in the principal-agent framework,

where the seller, and occasionally the buyer, is the principal and the broker the agent;

see e.g. Anglin and Arnott (1991), Bagnoli and Khanna (1991), Arnold (1992), Williams

(1998), Lewis and Ottaviani (2008)14 for theoretical and Rutherford, Springer, and Yavas

(2005) and Levitt and Syverson (2008) for empirical work. The present paper offers a

novel perspective by explaining fees as a means of rent extraction by brokers rather

than as an incentive for brokers. We think there are good reasons to depart from the

principal-agent framework. First, in the case where a broker represents a buyer, the

11Recall that the double auction described by Chatterjee and Samuelson (1983) satisfies the social
optimality condition stated in Myerson and Satterthwaite (1983, Theorem 2) for uniform distributions.
We show that the fee setting mechanism described here satisfies the intermediary optimality conditions
for general distributions. Moreover, for bilateral trade and for trade between one seller and many buyers
an ex ante efficient fee setting mechanism exists under the same sufficiency conditions as Gresik and
Satterthwaite (1989) use to prove the existence of an ex ante efficient mechanism.

12See also Wolinsky (1988), De Fraja and Sakovics (2001), Serrano (2002), Moreno and Wooders
(2002), Lauermann (2007), Lauermann and Wolinsky (2008). For complete information models see e.g.
Mortensen and Wright (2002), Gale (2000), and the references therein.

13McAfee (1993, p.1304) notes that [his] “paper falls far short of a real theory of equilibrium institu-
tions partly because it places the design of institutions in the hands of the sellers. A more satisfactory
approach requires explicit modelling of the role of intermediaries, or auctioneers, who compete among
each other for both buyers and sellers.”

14Lewis and Ottaviani have a general model of dynamic search agency with research and development
as the main application. However, real estate brokerage is one of the many applications of their model.
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broker typically charges 3 percent of the price paid by the buyer. This percentage fee

cannot be explained in a principal-agent framework where the buyer incentivizes the

broker to find an advantageous price for him, since their interests are diametrically

opposed under such a contract. Second, even in the cases where the broker represents

the seller, it is not clear why the broker typically gets 6 percent of the total price. If it

were the seller who proposes the contract to the broker, incentive compatibility implies

that he would give a much higher percentage to the broker for the marginal increase of

price he achieves. Making the individual rationality constraint binding should lead to

a lower fee on the inframarginal price.15 Third, the following observations suggest that

bargaining rests with the broker rather than the buyer or the seller: the almost complete

invariance of commission fees, the concerns about collusion by real estate brokers, and

the fact that brokers are long-term players with substantial benefits from reputation,

whereas individual buyers and sellers trade with very low frequency with brokers. It is

also hard to make a case that, as a consequence of competition between brokers, sellers,

or buyers, should propose the contract since in most other industries competing firms

like e.g. retailers, car manufacturers or gas stations make take-it-or-leave-it (price) offers

to their clients. Competition merely constrains these firms in what they can optimally

offer. Fourth, empirical observations of price dispersion of houses with the same quality

and the relation of the price and the time on market are difficult to explain in a principal

agent framework.

Our dynamic model also gives possible explanations for, or is at least consistent

with, the following stylized facts observed in real estate markets. First, real estate

brokers charge 6 percent of the transaction price, a commission rate that shows very

little variance over time and across regions. Second, sellers with a higher loan-to-value

ratio ask higher prices (Genesove and Mayer, 1997). Third, sellers who had bought their

houses when average real estate prices were high, ask for higher prices than those who

had bought when prices were low (Genesove and Mayer, 2001). Fourth, quality adjusted

prices and time on market of houses are positively correlated in cross sectional and

15As Hsieh and Moretti (2003) point out in their empirical analysis, a 6 percent fee seems to be far
above the costs incurred by a broker for a house selling for say USD 500,000, especially so as 6 percent
is sufficient to cover the broker’s costs for a house selling for USD 100,000.
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negatively correlated in longitudinal data. Fifth, broker fees are the same irrespective

of the number of intermediaries and house prices. Sixth, while industry profits doubled,

the number of brokers doubled as well (Hsieh and Moretti, 2003). Seventh, direct sellers

(either brokers selling their own houses or houses for sale by owner (FSBO)) sell at higher

prices than indirect sellers selling through a broker (see Rutherford, Springer, and Yavas,

2005; Levitt and Syverson, 2008; Hendel, Nevo, and Ortalo-Magné, forthcoming).

The remainder of this paper is structured as follows. Section 2 introduces the basic

model. Sections 3 and 4 derive the equilibrium and comparative statics. Section 5 applies

the model to markets of real estate agents, auction houses, and stock brokers. Section 6

concludes. All proofs are in the Appendix.

2 The Model

We study a fairly general model of intermediation. A discussion of our assumptions is

best deferred to Section 5, where we present and discuss various applications. Fig. 1

illustrates and summarizes the infinite horizon model we study. Every period a mass

1 of buyers and a mass 1 of sellers consider entering the market. An entering buyer’s

valuation of the good ṽ is drawn from the distribution F̃0 with strictly positive density f̃0

on the support [ṽ0, ¯̃v0]. Each entering seller has one unit of an indivisible good. His cost

of selling the good is c̃ is drawn from G̃0 with g̃0 > 0 on [c̃0, ¯̃c0].
16 Both valuation and cost

are private information, whereas the distributions are common knowledge. We refer to

ṽ and c̃ as a buyer’s and seller’s static type (i.e. static valuation and cost, respectively).

Buyers enter a pool with mass σ. The endogenous distribution of the valuations of

buyers in this pool is F̃ (ṽ) with support [ṽ, ¯̃v]. Similarly, sellers enter a pool of mass σ,

and the (endogenous) distribution of their costs is G̃(c̃) with support [c̃, ¯̃c]. We assume

that the market is in steady state, i.e. the traders entering the market (pool) have the

same mass and distribution of valuations as those who leave. We also assume that buyers

and sellers who cannot trade for sure do not enter the market. Hence, G̃ and F̃ are the

16For brevity, we refer to a seller’s valuation of the good, or his opportunity cost of selling the good,
as his cost. This makes clear that the model also applies to settings where the good has to be produced
by the seller at a cost.
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steady state cumulative distribution functions. Their densities are denoted with f̃ and g̃.

There is an unlimited supply of intermediaries standing ready to offer their services. In

the main analysis we abstract from the entry decision of intermediaries, but we address

this issue in Section 5. In each period, each buyer, each seller and an intermediary

are uniform randomly matched17 in a triple consisting of one member each of the three

groups. All agents are risk neutral, and preferences are quasilinear, i.e. when trading at

price p a buyer whose static valuation is ṽ gets the instantaneous net utility ṽ − p and

a seller with static cost c̃ enjoys a net payoff of p− c̃. In accordance with the literature

we assume that buyers and sellers who cannot trade do not enter the market in steady

state.18

Buyers and sellers who do not trade stay in the market with the exogenous probability

e−ητ until the next period, where τ represents the length of a period and η is a parameter

of the hazard rate. With probability 1 − e−ητ a trader drops out of the market and has

utility 0. For simplicity, assume that intermediaries stay in the market forever.19 Future

utility is discounted with a factor e−rτ . As for most of the analysis only the product

of these two factors matters, we define δ := e−(η+r)τ as the total discount factor. The

period length τ can be interpreted as the extent of frictions in the market or, as we will

show later, as a parameter of the degree of competition: the shorter the time of a new

match after a failed trade, the more fiercely intermediaries compete.

The dynamics offer buyers and sellers positive probability of trading in the future if

trade fails in the presence. That is, for given mechanisms employed by intermediaries

a buyer whose static type is ṽ will have a maximal willingness to pay v ≤ ṽ because of

her outside option of waiting and trading in the future. We call this lowered willingness

to pay her dynamic valuation or her dynamic type. Similarly, a seller with static type

c̃ will have a dynamic cost c ≥ c̃.20 The crucial point of our analysis is that there are

17This matching technology is essentially the same as in Atakan (2006a,b). It differs from Satterth-
waite and Shneyerov (2007, 2008) who assume a seller who is matched with zero, one, or many buyers.

18This is equivalent to assuming that the inequalities in Assumption 1 below are binding in steady
state.

19This assumption is not important. We could just as well have intermediaries arriving each period
and others dropping out.

20Put differently, the fact that there is a future drives a positive (negative) wedge between a buyer’s
(seller’s) static type and his dynamic type.
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monotonic relations between static and dynamic types, so that v = B(ṽ) = ṽ − δWB(ṽ)

and c = S(c̃) = c̃ + δWS(c̃), where both B and S are increasing functions and WB

and WS are the option values of continuing for buyers and sellers. This allows us to

use the dynamic valuation of the buyer v = B(ṽ) and the dynamic cost of the seller

c = S(c̃), which of course remain to be determined, to derive the endogenous distributions

F (v) = F̃ (B−1(v)) and G(c) = G̃(S−1(c)) with densities f and g.

We assume that intermediaries have all the instantaneous bargaining power. That is,

matched to a buyer and seller in a given period an intermediary chooses a mechanism that

maximizes his expected profit subject to the buyer’s and seller’s individual rationality

and incentive constraints. The relevant distributions an intermediary has to take into

account when designing his exchange mechanism are the distributions of buyers’ and

sellers’ dynamic types F and G. Note that from the point of view of an intermediary

this is equivalent to a one-shot game because the probability that he will meet the

same buyer or the same seller in a subsequent period is zero and because he takes the

mechanisms offered by other intermediaries in subsequent periods as given. Though the

individual rationality and incentive constraints are endogenous to the game, they are

exogenous for every intermediary. This motivates to study the one-shot game in some

detail, which is what we do in Section 3.1.

There are three types of distributions in our model: static entrant F̃0 and G̃0, static

steady-state F̃ and G̃, and dynamic steady-state F and G. The distributions F (v) and

G(c) and the mechanisms employed by the intermediaries which in turn determine the

probabilities ρB(v) and ρS(c) that a buyer v and a seller c trade in a given period. The

exogenous per period exit probability is 1− e−ητ . Therefore, the probabilities of staying

in the market are (1 − ρB(v))e−ητ and (1 − ρS(c))e−ητ . The steady state mass of agents

in the market being σ and the mass of entrants being 1, the densities f̃0(v) and g̃0(c)

entrants have to integrate to 1 and satisfy

f̃0(v) = σ[1 − (1 − ρB(B(ṽ)))e−ητ )]f̃(ṽ) (1)

and

g̃0(ṽ) = σ[1 − (1 − ρS(S(c̃)))e−ητ )]g̃(ṽ). (2)
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Figure 1: Market in steady state. Each period mass 1 of traders with distributions
F̃0 and G̃0 enter the market and join pools with distributions F̃ and G̃. Traders have
dynamic type distributions F and G. With probabilities ρB(v) and ρS(c) they leave the
market because they trade, with probability 1−e−ητ they leave the market for exogenous
reasons.

3 Equilibrium

We now turn to the equilibrium analysis of the model. We begin with the stage game,

which corresponds to a static, one-shot game.

3.1 The Stage Game

The stage game is of some interest of its own. In this game, distributions of costs and

valuations are the exogenously given primitives of the model. The intermediary is a mo-

nopolist who faces a buyer and a seller whose valuation v and cost c for a homogenous

good of known quality are private information and independently drawn from distribu-
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tions F and G.21 We assume that the intermediary has all the bargaining power, subject

to the individual rationality and incentive constraints of the buyer and the seller. The

distributions F and G have strictly positive density f and g on the support [v, v̄] and

[c, c], respectively.

As all agents are risk neutral and preferences are quasilinear, the buyer’s utility is

v − p and the seller’s payoff if p − c in case of trade at price p. The seller and the

buyer can only trade through the monopolistic intermediary who has all the bargaining

power and can hence choose the trade mechanism. The intermediary’s expected profit

under some mechanism is the equilibrium payment by the buyer minus the equilibrium

payment to the seller in expectations. A mechanism22 is intermediary optimal if there is

no mechanism that gives strictly higher profits to the intermediary in expectations over

the buyer’s and the seller’s valuation for the good, subject to the constraints that the

buyer and seller want to participate and that buyer’s and seller’s strategies constituting

a (Bayes) Nash equilibrium of the game.

Denote by Φ(v) := v− (1−F (v))/f(v) the buyer’s virtual valuation function. Anal-

ogously let the seller’s virtual cost function be denoted as Γ(c) := c + G(c)/g(c). The

intermediary’s mechanism design problem is said to be regular if both virtual type func-

tions are increasing. To simplify notation, in particular dealing with the inverses Φ−1

and Γ−1, we make the following two assumptions throughtout the paper. First,

Assumption 1. Φ(v̄) ≤ Γ(c̄) and Φ(v) ≤ Γ(c).23

Second, we assume Myerson’s regularity condition, i.e. Φ and Γ are increasing.24 The

general case without these assumptions can be easily dealt with by standard techniques

21As the model is static and has neither entry nor exit, trivially, no distinction between static and
dynamic types has to be made nor do we need to distinguish between distribution of entrant types and
types in the pool. This simplifies the notation.

22A mechanism means the following. First, the mechanism designer (here the intermediary) offers a
menu of possible actions to the seller and the buyer, for each combination of actions he announces the
payments a participant pays or receives and whether the good is exchanged, then both seller and buyer
pick actions that are mutually best replies. For the example of fee setting, the seller’s choice of actions
is the choice which price to ask. The buyer chooses between the actions of accepting or rejecting the
offer. A more detailed explanation of these concepts is provided e.g. in Krishna (2002, Ch.5).

23As it will become clear later on, this assumption means that an intermediary’s profit maximizing
mechanism excludes certain buyers and sellers from trade for sure.

24This implies a convex optimization problem for the intermediary.
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such as ironing and a slight modification of the definition of the inverses (see Appendix

C).

Fee Setting Mechanisms The main focus of this paper is on the following type of

indirect mechanisms, which we call fee setting mechanisms.

First, the intermediary first announces a fee function ω(.) that determines the amount

the intermediary gets upon successful sale at price p, leaving p−ω(p) to the seller. Then

the seller sets the price p, knowing ω and his own cost c. Finally, observing p and her

own valuation v, the buyer then accepts or rejects the offer p and the game ends. If the

buyer accepts, the seller gets the net price p− ω(p) and the intermediary the fee ω(p).

Notice that by construction a fee setting mechanism has the property that payments

occur only if there is trade. Thus, there is no regret. Obviously the buyer accepts if and

only if v ≥ p. The choice of the fee are analyzed next. Below we also study a slightly

modified version of this game with multiple buyers whose valuations are independent

draws from the distribution F while there is still one seller and one intermediary.

Our assumption that the seller pays the fee is of course without loss of generality, i.e.

how the intermediary’s fee ω(p) is allocated between the buyer and the seller does not

matter. We use the convention of saying that an equilibrium is essentially unique if all

seller and buyer types who trade with positive probability in some equilibrium take the

same action in every equilibrium.25 Analogously, a fee structure is said to be essentially

unique if it is unique pinned down for all those prices that are accepted by some type of

buyer with positive probability.

The Simple Economics of Optimal Intermediation The buyer’s virtual valuation

Φ(v) can be interpreted as the marginal revenue of increasing the probability of trade, the

seller’s virtual cost as marginal cost.26 Therefore, the intermediary wants the seller and

25Put differently, an equilibrium is essentially unique if equilibria only differ with respect to actions
of types who never trade in any equilibrium.

26The reasoning is similar to Bulow and Roberts (1989)’s for optimal auctions: interpret the proba-
bility that Ṽ ≥ v and C̃ ≤ c as quantity demanded and supplied, i.e. q := 1−F (v) and q := G(c). Thus
the inverse demand and supply function are v = F−1(1−q) and c = G−1(q), yielding R(q) = qF−1(1−q)
and C(q) = qG−1(q) as revenue and cost functions. Taking derivative w.r.t. q and substituting back in
yields R′(q) = Φ(v) and C′(q) = Γ(c).
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the buyer to trade if and only if marginal revenue exceeds marginal cost, i.e. whenever

Φ(v) ≥ Γ(c).

As shown by Myerson and Satterthwaite (1983), this is indeed the optimal allocation

rule for the intermediary.27 Due to payoff equivalence (see e.g. Krishna (2002)), once the

allocation rule is determined the equilibrium expected payoffs for all types of all players

are determined up to an additive constant. It is in the intermediary’s interest to minimize

this constant subject to the individual rationality constraint that all types of buyers and

sellers are willing to participate in the mechanism. Therefore, under the intermediary

optimal mechanism the worst off agents are just indifferent between participating and

not, i.e. the lowest valuation buyer v and the least efficient seller c get expected payoffs

of zero. See Lemma 2 in the Appendix for a summary and formalization of these results.

Intermediary Optimal Fee Setting Mechanism We now show that an intermedi-

ary optimal fee setting mechanism exists. Let us denote P (c) := Φ−1(Γ(c)) for notational

ease, which will turn out to be the price the seller sets in equilibrium, and denote its

inverse as P−1.

An intuitive derivation of the optimal fee setting mechanism can be obtained by

taking a brief detour through a dominant strategy direct mechanism implementation.28

The dominant strategy implementation is that the intermediary asks agents to report

their types and allows trade iff v ≥ P (c) (or equivalently c ≤ P−1(v)) and in case of trade

the buyer pays P (c) and the seller gets P−1(v).29 Conditional on trade, the seller thus

gets Ev[P
−1(v)|v ≥ P (c)] in expectations over v. Since the seller cares only about what

he gets in expectation rather than individual realizations of v, the intermediary could

27Myerson and Satterthwaite (1983) are almost exclusively cited for their impossibility results. A
notable exception is Spulber (1999, Ch.7), who compares the optimal direct mechanism of Myerson and
Satterthwaite with price posting by the intermediary.

28A direct mechanism requires participants to report their valuations to the mechanism designer who
will take actions for them rather than taking actions themselves. The idea of a dominant strategy
implementation goes back to Vickrey (1961)’s analysis of second price auctions. It basically means that
it is a dominant strategy (i.e. optimal independently of the other agent’s actions) for every participant
to report their types truthfully.

29The buyer gets a take-it-or-leave-it offer at price P (c). It is clearly a dominant strategy to accept
the offer iff v ≥ P (c). The same applies to the seller. This dominant strategy implementation is already
mentioned in Myerson and Satterthwaite (1983) after Theorem 4.
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just as well pay the seller the expected value as the net price P (c) − ω(P (c)). Equating

the net price P (c)− ω(P (c)) with the seller’s expected payoff and replacing P (c) with p

gives the optimal fee as stated in Proposition 1.30

Proposition 1. An intermediary optimal fee setting mechanism exists and is essentially

unique. The optimal fee function is

ω(p) = p−Ev[P
−1(v) | v ≥ p] (3)

for p < v̄ and an arbitrary ω(p) ≥ v̄−p for p ≥ v̄. A seller with cost c ≤ P−1(v) sets the

price p = P (c) and a buyer with valuation v accepts iff p ≤ v. Moreover, the equilibrium

is essentially unique.

A few remarks are in order. First, this fee setting mechanism is optimal in the general

class of mechanisms, i.e. the intermediary cannot do better by any other mechanism than

fee setting. Second, taking the derivative of (3) and rearranging by partial integration

shows that the marginal fee ω′ can never be higher than 100 percent.31 This is of course

what one would expect from incentive compatibility. Interestingly, ω′(p) < 0 is not

impossible a priori.32 Third, consider two markets characterized by P−1(v) and P̂−1(v)

and by the same F and denote the associated intermediary optimal fees by ω(p) and

ω̂(p), respectively. If P−1(v) < P̂−1(v) for all v, then the total fee is higher in the former

market, ω(p) > ω̂(p), since Ev[P
−1(v) | v ≥ p] < Ev[P̂

−1(v) | v ≥ p]. If in addition

[P−1(v)]′ < [P̂−1(v)]′ for all v, then the marginal fee is higher as well, ω′(p) > ω̂′(p)

for all p.33 Fourth, Proposition 1 implies that the intermediary can achieve his maximal

expected profit without knowing or making use of the buyer’s valuation when determining

payments in case of trade. The buyer’s valuation is only needed to determine whether the

good is traded. However, the optimal mechanism depends in general on the distribution

30Alternatively, one can equate the seller’s utility under fee setting [P (c) − ω(P (c)) − c][1 − F (P (c))]
with his information rent and solve first for ω(P (c)) and then for ω(p) (see the formal proof in the
Appendix).

31A similar observation in the context of income taxation is made by Mirrlees (1971).
32Notice that this does not violate incentive compatibility of the seller because the net price p−ω(p)

is only one part of the seller’s payoff, the probability of of sale 1 − F (p) being the other one.
33To see the latter, integrate Ev[P−1(v) | v ≥ p] by parts (or go directly to equation (20) in the

Appendix) and then take the derivative with respect to p.
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of the buyer’s valuation F . It is therefore rather striking that for a certain family of

distributions of seller’s types, namely all those that exhibit virtual costs that are linear

in c, the optimal fee charged by the intermediary is independent of F and linear:34

Proposition 2 (Optimality of Linear Fee Mechanisms). The following are equivalent

statements:

(i) a linear fee mechanism is optimal, i.e. ω(p) = ξp+ ζ is intermediary optimal,

(ii) c is drawn from a generalized power distribution G(c) =
(

c−c
c̄−c

)β

with β > 0,

where ξ = 1/(β + 1) and ζ = −c/(1 + β) holds.

For example, if G is uniform on [0, 1], then Γ(c) = 2c and ω(p) = p/2, which is

obviously independent of F . As the optimal linear fee is fully determined by the two

parameters β and c of the distribution of the seller’s cost G, Corollary 1 follows directly

from Proposition 2.

Corollary 1 (Invariance of Linear Fees). If a linear fee is intermediary optimal for some

distributions F and G, then it will also be optimal for F̂ and G, where F̂ is an arbitrary

regular distribution.

The reverse implication of Corollary 1 also holds:

Proposition 3. If a fee function ω is optimal for a given G and for an arbitrary regular

F , then the fee has to be linear and G has to be a generalized power distribution.

For an interpretation of these results see the application to real estate brokerage in

Section 5.1.

Analogous results can be obtained for mechanisms where the buyer sets the price and

the fee is conditioned on this price. It is for instance optimal for the intermediary to let

the buyer set the price and charge the fee ωB(p) = Ec[P (c)|c ≤ p] − p, which induces

the buyer to set the price p = P−1(v). For F (v) = 1− [(v− v)/(v̄− v)]βB the fee will be

linear and independent of the seller’s distribution.

34Linearity of the optimal fee obtains under conditions that are similar to the ones under which ?

find that a double auction has a linear equilibrium.
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Ex ante efficient Fee Setting Mechanism In fact, not only the intermediary op-

timal allocation rule, but any monotone allocation rule35 can be implemented as a fee

setting mechanism. since nothing of substance in the construction of ω(p) requires the

pricing function to implement the intermediary optimal allocation rule.

An allocation rule that has received some attention in the literature is the one that

maximizes the ex ante expected gains from trade, subject to budget balance, and volun-

tary participation.

Corollary 2. Assume increasing hazard rates, i.e. (1 − F )/f decreasing and G/g in-

creasing. The fee ωα∗(p) = p − Ev[P
−1
α∗ (v)|v ≥ p] implements the ex-ante efficient allo-

cation rule and induces an essentially unique equilibrium, where Pα(c) := Φ−1
α (Γα(c)),

Φα(v) := αΦ(v) + (1− α)v, and Γα(c) := αΓ(c) + (1− α)c for some α ∈ [0, 1]. α∗ is the

smallest α such that
∫ ∫

(Φ(v) − Γ(c))Qα(c, v)dcdv ≥ 0 where Qα = 1 if Φα ≥ Γα and 0

else.

For F and G uniform on [0,1], α∗ = 1/3 and ωα∗(p) = p/2 − 1/4. Interestingly, for

the case of uniforms the ex ante efficient fee charges the same percentage of the price as

the intermediary optimal fee. But it also consists of a ’deductible’ of 1/4 upon successful

sale. Notice that this deductible may come in the form of services the intermediary

provides to the seller.

The corollary complements the finding of Myerson and Satterthwaite (1983) that

for F and G uniform the double-auction of Chatterjee and Samuelson (1983) has an

equilibrium that implements the ex ante efficient mechanism. Notice also that the fee

setting mechanisms of Proposition 1 and Corollary 2 do not only respect participation

constraints ad interim but also ex post because in equilibrium a buyer never accepts a

price exceeding her valuation and a seller never sets a price such that he would make a

loss in case of trade. Therefore, these mechanisms are also within the more restrictive

set of mechanisms that respect participation constraints ex post.36

35A an allocation rule is said to be monotone if the probability that the buyer gets the good increases
in v and the probability that the seller sells decreases in c.

36These arguments thus generalize, and simplify, the proof by ? that a socially optimal incentive
compatible mechanism exists that satisfies ex post participation constraints.
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3.2 The Dynamic Game

We now turn to the analysis of the dynamic game with random matching introduced in

Section 2. In every period every intermediary first announces a fee ω that is a function

of the price the seller will set. Then the seller sets a price p. If the buyer accepts, he

pays p, the seller gets the net price p− ω(p), and the intermediary the fee ω(p). If there

is trade, the net utility of the seller with cost c̃ is p − ω(p) − c̃, the buyer’s net utility

is ṽ − p, and both traders leave the market. Throughout the analysis of the dynamic

game, we focus on an equilibrium where the population of intermediaries choose time

invariant mechanisms, though we do not restrict the individual intermediary to choose

a time invariant mechanism.37

We first determine the equilibrium strategies of buyers and sellers, taking the mech-

anism(s) intermediaries use as fixed. Following a similar logic as Satterthwaite and

Shneyerov (2007) we first consider the discounted utility of a buyer with static valuation

ṽ who cannot commit to reject an offer below his dynamic valuation v

WB(ṽ, v) = ρB(v)(ṽ −DB(v)) + (1 − ρB(v))δWB(ṽ, v), (4)

where ρB(v) is the probability of trade implied by the mechanism chosen by the interme-

diaries and DB(v) := Ec[P (c)|P (c) ≤ v] is the buyer’s expected payment. Rearranging

yields WB(ṽ, v) = (ṽ −DB(v))PB(v), where

PB(v) :=
ρB(v)

1 − (1 − ρB(v))δ

is “the discounted ultimate probability of trade” in Satterthwaite and Shneyerov (2007)’s

terminology.

Assuming that the buyer plays a steady state strategy (i.e. the maximal price v that

he is willing to accept is the same in each period), his “interim utility” is

WB(ṽ) = sup
v

(ṽ −DB(v))PB(v) = (ṽ −DB(B(ṽ)))PB(B(ṽ)).

37However, given that all others are using time invariant mechanisms, an individual intermediary’s
best response mechanism will be time invariant as well.
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By the same logic as Satterthwaite and Shneyerov (2007)’s Lemma 3 (i.e. using Milgrom

and Segal (2002)’s generalized versions of the envelope theorem)

WB(ṽ) = WB(ṽ) +

∫ ṽ

ṽ

PB(B(x))dx.

WB(ṽ) turns out to be zero, since the lowest valuation buyer is just indifferent between

participating and not. A buyer will accept an offer if the price is below his dynamic

valuation

v = B(ṽ) = ṽ − δWB(ṽ).

Combining this with the previous result we get

B(ṽ) = ṽ − δ

∫ ṽ

ṽ

PB(B(x))dx, (5)

and the differential equation

B′(ṽ) = 1 − δPB(B(ṽ)). (6)

Note that the dynamic valuation approaches the static valuation (i.e. B(ṽ) → ṽ) as the

waiting times between trading opportunities become infinitely long (i.e. as τ → ∞),

which implies δ = e−(η+r)τ → 0 and basically means that the game reduces to the one-

shot game analyzed in Section 3.1. Observe also that B′(ṽ) = (1−δ)/(1−(1−ρB(v))δ) ∈
[1 − δ, 1]. Therefore, the difference ṽ − B(ṽ) between static and dynamic type increases

in ṽ for δ > 0.

A similar analysis can be carried out for the seller. For expositional clarity assume for

the moment that the intermediary uses the dominant strategy implementation described

in Myerson and Satterthwaite (1983).38 For this mechanism clearly the same logic applies

for the seller as for the buyer: he accepts any offer that is above his dynamic costs. By

the same procedure we get

S(c̃) = c̃+ δWS(c̃), (7)

where WS(c̃) =
∫ c̃

c̃
PS(S(x))dx, and

S ′(c̃) = 1 − δPS(S(c̃)), (8)

38That is, there is trade iff Φ(v) ≥ Γ(c), in case of trade the buyer pays Φ−1(Γ(c)) and the seller gets
Γ−1(Φ(v)))
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where PS(c) := ρS(c)/(1 − (1 − ρS(c))δ) is the ultimate discounted probability of trade

for a seller. Observe that eq. (8) implies that the difference between dynamic and static

type, S(c̃) − c̃, is increasing in c̃ for δ > 0.39

Every intermediary has measure zero and takes the distribution F and G as exoge-

nously given. Therefore, the probabilities of trade will be given by the intermediary

optimal allocation rule (applied to the dynamic types):

ρB(v) = G(Γ−1(Φ(v))), (9)

ρS(c) = 1 − F (Φ−1(Γ(c))). (10)

Equations (6), (8), (9), (10), F (v) = F̃ (B−1(v)), and G(c) = G̃(S−1(c)) character-

ize the dynamic types v = B(ṽ), c = S(c̃) and their distributions F and G for any

given steady state distributions F̃ and G̃. The relation of these distributions to the

distributions of the entrants F̃0 and G̃0 is determined via eqs. (1) and (2).

In principle, this already allows us to derive the optimal fee function ω, by obtaining

F and G from the underlying steady state static distributions and substituting into (1).

This allows us to state the following corollary to Proposition 1:

Corollary 3. For any strategies chosen by other intermediaries, choosing a fee setting

mechanism is a best response for an intermediary. The optimal fee is given by ω(p) in

Proposition 1 where F and G are the endogenous dynamic steady state distributions.

Consequently, if there is a market equilibrium in any strategies, there is also an equilib-

rium with fee setting mechanisms.

4 Steady State Comparative Statics

We now turn to a comparative statics analysis of the steady state equilibrium.

4.1 Model with Closed Form Solution

We now present a model that permits a closed form solution. We first assume that the

steady state distributions of dynamic types F (v) and G(c) are uniform on [1/2,1] and

39If one interprets B and S as endogenous reservation prices, then the fact that ṽ−B(ṽ) and S(c̃)− c̃
are increasing functions obtains in many other models as well, including e.g. Gehrig (1993) and Rust
and Hall (2003).
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[0,1/2], respectively. That is, F (v) = 2v−1 for v ∈ [1/2, 1] and G(c) = 2c for c ∈ [0, 1/2].

We then derive the conditions on the distributions of entrant types under which these

assumptions are indeed correct. Since the dynamic types v = B(ṽ) and c = S(c̃) are

monotonically increasing functions of the static types, the distributions F̃ (ṽ) and G̃(c̃)

can be inferred using F̃ (ṽ) = F (B(ṽ)) and G̃(c̃) = G(S(c̃)).

Notice that the virtual valuation is Φ(v) = 2v − 1 and the virtual cost is Γ(c) = 2c.

The assumption on the supports implies Γ(0) = Φ(1/2) and Γ(1/2) = Φ(1). Observe

also that under these conditions Corollary 3 implies that the equilibrium fee structure

is ω(p) = p/2. Equations (9) and (10) yield ρB(v) = 2v − 1 and ρS(c) = 1 − 2c. The

ultimate probabilities of trade thus become

PB(v) =
2v − 1

1 − 2δ(1 − v)
and PS(c) =

1 − 2c

1 − 2cδ
.

This admits the closed form solutions

B(ṽ) =
1

2δ

(

2δ − 1 +
√

(1 − δ)(1 − 3δ + 4ṽδ)
)

and

S(c̃) =
1

2δ

(

1 −
√

(1 − δ)(1 + δ − 4c̃δ)
)

to the differential equations (6) and (8).

The function c = S(c̃) is plotted for in Fig. 2. It illustrates that the wedge S(c̃) − c̃

decreases in c̃, so that the sellers with the lowest static costs exhibit the largest differences

between dynamic and static costs.

Replacing v by B(ṽ) in F (v) and c by S(c̃) in G(c) yields

F̃ (ṽ) =
δ − 1 +

√

(1 − δ)(1 − 3δ + 4δṽ)

δ
(11)

G̃(c̃) =
1 −

√

(1 − δ)(1 + δ − 4c̃δ)

δ
. (12)

The lower and upper bound of the support of the buyers’ static types is found by re-

spectively solving F̃ (ṽ) = 0 and F̃ (ṽ) = 1, yielding ṽ = 1/2 and ṽ = (4− 3δ)/(4(1− δ)).

Similarly, the lower and upper bound of the static seller type support is found by equat-

ing G̃(c̃) = 0 and G̃(c̃) = 1, yielding c̃ = −δ/(4(1 − δ)) and c̃ = 1/2. On their supports,
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0.5

0 1−1−2
c̃

c = S(c̃)

Figure 2: S(c̃) for η = r = 0.1 and τ = 1. For τ = ∞, S(c̃) is equal to the 45-degree line
(dashed line).

the densities of the static types are

f̃(ṽ) =
2(1 − δ)

√

(1 − δ)(1 − 3δ + 4δṽ)

g̃(c̃) =
2(1 − δ)

√

(1 − δ)(1 + δ − 4c̃δ)
.

We are left to determine the static types distribution of entrants. We first make the

following observations, which are true irrespective of the specific steady state distribu-

tions. Inspection of eq. (2) reveals that for every entering seller with dynamic type c

there are [σ(1 − (1 − ρS(c))e−ητ )]−1 sellers with the same c in the market. Since ρS(c)

decreases in c, this is increasing in c, implying that sellers with higher dynamic costs

accumulate more in the market. Similarly, eq. (1) implies that for every entering buyer

of type v there are [σ(1 − (1 − ρB(v))e−ητ )]−1 buyers of the same type in the market.

Since ρB(v) increases in v, this mass is decreasing in v. Thus, buyers with lower dynamic

types accumulate in the market. Both of these observations are very intuitive, of course,

since buyers with lower valuations and sellers with higher costs have a lower probability

of trading in any given period.

When the steady state distributions of traders in the market are uniform, substituting

S(c̃) for c in (2) gives g̃0(c̃) = σ(1− (1− ρS(S(c̃)))e−ητ )g̃(c̃). For G(c) and F (v) uniform
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on [0, 1/2] and [1/2, 1], respectively, equation (2) simplifies to g0(c) = 2σ(1 − 2ce−ητ ).

Since g̃0(c̃) = g0(S(c̃))S ′(c̃), this yields

g̃0(c̃) = 2 σ
1 − δ

δ
e−η τ

(

1 − 1 − e−rτ

√

(1 − δ) (1 + δ − 4c̃δ)

)

. (13)

Observe that g̃0(c̃) decreases in c̃. Since the steady state distribution of seller types in

the market is uniform, this means that less efficient sellers accumulate in the market in

the sense that g̃(c̃1)/g̃0(c̃1) > g̃(c̃2)/g̃0(c̃2) ⇔ c̃2 < c̃1. Fig. 3 illustrates this.

Similarly, for buyers the density of the dynamic types of entrants is f0(v) = 2σ[1 −
2(1 − v)e−ητ ]. Using the fact that f̃0(ṽ) = f0(B(ṽ))B′(ṽ) we get

f̃0(ṽ) = 2σ
1 − δ

δ
e−ητ

[

1 − e−rτ

√

(1 − δ)(1 − 3δ + 4δṽ)

]

. (14)

Notice that f̃0(ṽ) increases in ṽ. Since the steady state distribution of buyer types is

uniform, this implies that buyer with lower static valuations tend to accumulate in the

market insofar as f̃(ṽ1)/f̃0(ṽ1) > f̃(ṽ2)/f̃0(ṽ2) ⇔ ṽ1 < ṽ2.

We summarize these findings in the following proposition:

Proposition 4. Assume that c̃ and ṽ have support [−δ/(4(1 − δ)), 1/2] and [1/2, (4 −
3δ)/(4(1 − δ))], respectively, and let the densities of entrant types be given by g̃0(c̃) and

f̃0(ṽ) as in eq. (13) and (14). Then the steady state distributions of static types are given

by eqs. (11) and (12), and the distribution of dynamic types are uniform with v ∈ [1/2, 1]

and c ∈ [0, 1/2], and the equilibrium fee of every intermediary is ω(p) = p/2.

Fig. 3 shows how g̃(c) relates to g(c). For δ = ǫ = 0, g̃ and g coincide.

4.2 First Order Effects – Perturbation Analysis

Even though an analytical solution cannot be found in general, we can describe the

effects of infinitesimally small perturbations of an analytically tractable solution.
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1
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0 1−1−2
c̃,c

g̃0(c̃)

σg̃(c̃)

σg(c)

Figure 3: g̃0(c̃), g̃(c̃), and g(c) for η = r = 0.1 and τ = 1.

We will start out with a case where we have an analytical solution: the static model. If

traders discount the future with factor δ = e−(r+η)τ → 0 (equivalent to r → ∞) and their

probability of staying in the market ǫ := e−ητ → 0 (equivalent to η → ∞), the solution

of the dynamic game trivially coincides with the static game, we have c = S(c̃) = c̃

and g = g̃ = g̃0. As a next step we increase the probability of staying in the market

ǫ infinitesimally, but keep the discount rate δ constant. This has the effect that static

types and dynamic types still coincide, but entrant and steady state distributions become

different since sellers accumulate. We will also assume that the change of ǫ only affects

G and not F , because only the drop out rate of sellers changes. Another possible reason

is that we are close to a power distribution, so that a change of F hardly has any effect.

The following analysis uses perturbation analysis to perturb a function infinitesimally

and look at the first order effect of this perturbation on the system of differential equa-

tions. As long as second order effects are sufficiently small, this is a good approximation

of the exact solution.

To simplify the exposition, we will denote in this subsection the entrant static type

distributions F and G instead of F̃0 and G̃0; the distributions of the steady state dynamic

types (which coincide with the static types) will be denoted by F̂ and Ĝ.
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Now recall from (2)

σ(1 − (1 − ρS(c))ǫ)ĝ(c) = g(c), (15)

where ρS(c) = 1−F (Φ−1(Γ(c))) and σ is a constant such that the density function ĝ adds

up to one. In the following, we want to have a function γ that infinitesimally perturbs ĝ

ĝ(c) = (1 + ǫγ(c))g(c)

and ensures that ĝ adds up to one, i.e.
∫ c

c
γg = 0.

Increasing ǫ infinitesimally has the following first order effects.

Proposition 5. The first-order effects of an increase of ǫ from ǫ = 0 are the following:

(i) (ln Ĝ)′ increases,

(ii) Γ̂ decreases and Γ̂−1 increases,

(iii) the sign of the change of (Γ̂−1)′ is ambiguous.

Since Ĝ enters ω̂ only through Γ̂−1 and ω̂′ only through (Γ̂−1)′ (see equation (1) and

the discussion after Proposition 1), this leads us immediately to the following Corollary.

Corollary 4. As the waiting time between rematchings decreases (starting from an in-

finite waiting time and considering first-order effects)

(i) the overall fee ω(p) becomes lower,

(ii) the sign of the change of the marginal fee ω′(p) is ambiguous.

That the overall fee is lower with more frequent rematching could be suspected by

intuition for two reasons. First, a more frequent rematching resembles more competition

and should therefore drive down fees. Second, we have seen for the case of uniform

dynamic cost distributions that more frequent rematching makes the seller’s cost dis-

tribution more convex, which corresponds for a power distribution to β increasing. A

higher β means a lower fee. But a formal derivation of the first order effects shows

that the intuition does not carry over further. An increase of β for a power distribution
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also means a lower marginal fee. However, the first order effect for the marginal fee is

ambiguous.

The role private information plays in our model is also worth a brief discussion in

this context. If the valuations and costs of buyers and sellers were commonly known,

then each intermediary would optimally leave zero net utility to each of them. Therefore,

like in Diamond’s model reducing the search friction, which in our setup corresponds to

shortening the period length, would have no effect on equilibrium fees unless the search

friction can be abolished completely.40 With private information, however, shortening the

period length does have a discernible effect on the equilibrium fee structure. Note further

that in the dynamic setup, private information may be welfare improving, whereas in the

static setup it is clearly welfare reducing. The reason is that with v and c being public

knowledge, more trade happens than in the Walrasian equilibrium, hence reduction of

trade with private information may be welfare enhancing.41

In Proposition 8 below we shall see that the present model’s comparative statics with

respect to the number of intermediaries are similar to those of a complete information

model.

4.3 Numerical Results

We have shown that if the seller’s cost is distributed according to a power distribution,

linear fees are optimal for the intermediary. This of course raises the question whether,

and why, one should observe power distributions empirically.

40A simple illustration of the logic of the so called Diamond paradox (see e.g. Anderson and Renault,
1999) is to assume that, say, a buyer searches sequentially and discounts future payoffs with the factor
δ ∈ (0, 1). Let UB(ṽ) be the payoff he gets when buying from the intermediary he is currently matched
to. Since he has the option of continuing search, UB(ṽ) = δUB(ṽ) has to hold. But since δ < 1 this
implies UB(ṽ) = 0. With incomplete information, the buyer enjoys an informational rent of ṽ − DB(v)
as given in (4). Notice in particular that if it were the case that ṽ − DB(v) = 0, then WB(ṽ, v) = 0
would follow for exactly the same reason as in Diamond (1971).

41In the Walrasian equilibrium, buyers and sellers with ṽ ≥ p∗ and c̃ ≤ p∗ trade, where the Walrasian
price is given by 1 − F̃0(p

∗) = G̃0(p
∗). With public information, a trader accepts the first offer he gets

from an intermediary (giving him zero utility), since his option value of continuing is zero. Hence, all
buyers and sellers with v, c ∈ [min{c̃, ṽ}, min{c̃, ṽ}] trade, which is more than the Walrasian quantity.
Whether a reduction of trade by private information increases or decreases welfare, depends on the
specific distribution. See also Satterthwaite and Shneyerov (2007, 2008), Lauermann (2007), and Lauer-
mann and Wolinsky (2008) for comparisons of effects arising in incomplete and complete information
models with dynamic matching. We thank Stephan Lauermann for pointing this out to us.
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Looking at the dynamics of the model leads to an intuitive explanation for power

distributions. Sellers with high costs offer their goods at higher prices, hence it takes

them longer to sell their goods and they cumulate more in the market. This changes the

initial distribution to one with more weight on the right end and less on the left. Loosely

speaking, this makes the distribution more similar to a power distribution (with β > 1

in G(c) = cβ). For distributions other than power distributions closed form solutions

cannot be obtained for the system of differential equations that determine the market

equilibrium. However, as we show in the following, numerical calculations confirm the

intuitive explanation.

We approximate the functions in the system of differential equations with sixth degree

Chebyshev polynomials and solve the system numerically. We will show that the more

dynamic a market (i.e. the higher the rematching frequency) is, the “closer” the seller’s

distribution to a power distribution. We define “closeness” as the ratio of profits with

the best linear fee to profits with the optimal fee function Πlinear/Πoptimal with

Πoptimal =

∫ ∫

max{Φ(v) − Γ(c), 0}f(v)g(c)dvdc

and

Πlinear = max
ξ,ζ

∫
(

ξΦ−1

(

c+ ζ

1 − ξ

)

+ ζ

)(

1 − F

(

Φ−1

(

c + ζ

1 − ξ

)))

g(c)dc.

The expression for Πlinear stems from the fact that a seller facing a percentage fee ξ

and a fixed fee ζ will set the price p = Φ−1
(

c+ζ
1−ξ

)

, which generates expected profits

(ξp+ ζ)(1 − F (p)) for the intermediary.

Since convex distributions are already more similar to power distributions and hence

favorable for linear fees, we will take a distribution which works against linear fees as a

numerical example, the concave distribution g̃0(c̃) = 6c̃(1 − c̃) (and f̃0(ṽ) = 6ṽ(1 − ṽ)),

see the dotted lines in Fig. 4.42

Fig. 4 depicts the exogenous and endogenous distributions as the rematching fre-

quency (and hence also δ and ǫ) increases. It illustrates graphically that as the rematch-

ing frequency increases the steady-state dynamic distribution looks “more similar” to a

42To be precise, we take g̃0(x) = f̃0(x) = [6x(1 − x) + 0.1]/1.1 to avoid numerical problems with
division by zero at x = 0 and 1.
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power distribution. Fig. 5 shows that our measure of closeness to a power distribution

increases indeed as the rematching frequency increases, i.e. for more dynamic markets

linear fees do better. Actually, one can see that already for the static market, linear fees

achieve more than 99.8% of what is obtainable with the optimal mechanism.
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Figure 4: Exogenous (dotted: entrant static) and endogenous (dashed: steady-state
static, solid: steady-state dynamic) densities with a low (left) and a high (right) re-
matching frequency. For the lowest rematching frequency (ǫ = δ = 0) we are back to the
static model and the endogenous distributions coincide with the exogenous ones (dotted).
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Figure 5: Ratio of best linear to optimal profits as the rematching frequency increases.
The horizontal axis is the probability of remaining in the market ǫ with ǫ = e−0.1τ , the
discount rate δ is given by δ = e−0.2τ .
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5 Real Estate Brokers and Other Applications

We first discuss how our model can account for the stylized facts of real estate brokerage

that we listed in the Introduction.

5.1 Stylized Facts for Real Estate Brokerage Revisited

We have partially dealt with the first stylized fact (6% fee) in the previous sections and

will say more about it in the next subsection. The second (higher loan-to-value ratio

leads to higher price) and the third (house originally bought during boom offered at

higher price) are relatively easy to explain, the others will be dealt with later on. The

second fact can be interpreted as the loan-to-value ratio being a proxy for the seller’s

cost. Note that in a Walrasian equilibrium, by the law of one price, the price of a house

must only depend on its characteristics and not on the seller’s preferences. Therefore,

this fact is inconsistent with the law of one price. However, it is consistent with a setup

with search frictions and incomplete information, since this leads to price dispersion.

The third fact can, again, be explained by price dispersion of houses of the same quality.

During a boom only buyers from the upper quantiles of the valuation distribution buy,

for low valuation buyers prices are too high. When average prices are low, also buyers

from the lower quantiles buy. Assuming that individuals that were high valuation buyers

when they bought their houses are more likely to be high cost sellers when they sell later,

we would expect the effect described in Genesove and Mayer (2001): buyers who bought

during a boom ask for higher prices.43,44

In the following, besides giving explanations for the other stylized facts, we will show

43One may worry that this argument relies on the valuations of buyers and sellers being differently
distributed, even though in real estate markets most buyers are also sellers and vice versa. Note,
however, that the explanation relies only on the dynamic steady-state distributions to be different for
buyers and sellers (see solid line in Fig. ??), the fundamentals, i.e. the entrant static type distributions
(dotted line) can be the same for buyers and sellers. The transformation from the dotted to the solid
line breaks the original symmetry for two reasons. First, low valuation buyers remain longer in the
market, whereas for sellers it is the ones with high costs. Second, the option value of future trade has
to be subtracted for a buyer, but added for a seller.

44Note that Genesove and Mayer (2001) observe more than the above-mentioned statement: the effect
of the previous transaction price of a house on the current asking price depends on whether the price
level has increased or decreased. Whether this can be explained in a setup similar to ours is a question
for further research.
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the empirical implications of our model. Of course, an empirical analysis would have to

incorporate the specificities of the housing market.

Linear and Invariant Fees As optimality of linear fees implies invariance of the fees

with respect to the buyer’s distribution, the empirical prediction of Proposition 2 is that

whenever profit maximizing intermediaries choose linear fee setting as a mechanism,

these fees will be invariant.

Of course, this raises the question whether the seller’s distribution should vary if the

buyer’s varies as well. A first part of the answer is the upper part of the seller’s cost

distribution [P−1(v̄), c̄], i.e. those sellers who for sure cannot sell, is irrelevant for the

intermediation problem at hand. Therefore, Proposition 2 means that a linear fee only

implies a generalized power distribution in the relevant range [c, P−1(v̄)]. Above this

range, G can have any shape, provided its virtual cost function is increasing.45 Note

also that the relevant range [c, P−1(v)] can be say [0; $100, 000] in the countryside and

[0; $1, 000, 000] in a big city, but they both lead to the same fee if they have the same

shape in this range.

Corollary 1 and the empirical prediction thus hold not only when the cost distribution

is the same over time and across regions, but even if it has only the same shape in the

relevant range. This is illustrated in Fig. 6 that shows two different distributions of the

seller’s cost that lead to the same fee.

The second part of the answer relies on how the distributions of steady state dynamic

types are related to the distributions of entrant static types in the dynamic game with

random matching. The dynamics of the market lets sellers with high costs cumulate in

the market and drive their distribution towards a power distribution. While this is yet

to be shown analytically, we already have numerical results pointing in this direction.

The widespread use of linear fees raises the question whether linear fees may perform

well even when the seller’s distribution does not exhibit linear virtual costs. Though

a complete analysis of the performance of linear fees in such environments is beyond

45For many markets, it is reasonable to assume that most sellers are above the relevant range, so that
the sellers with a positive probability of trade are just the “tip of the iceberg”. E.g. most house owners
prefer staying in their houses rather than offer them for sale.
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c P−1
1 (v̄1) P−1

2 (v̄2)
c

g1(c)

g2(c)

Figure 6: Two distributions of the seller’s cost c leading to the same fee. The densi-
ties g1 and g2 have the same shape in their respective relevant ranges [c, P−1

1 (v̄1)] and
[c, P−1

2 (v̄1)].

the scope of the present paper, we provide some numerical examples in Appendix B

that suggest that linear fees are close to optimal for other distributions than power

distributions. Here we restrict ourselves to the example g(c) = 6c(1 − c) and f(v) = 1

as depicted is Fig. 7. Even though g is far from a power distribution, choosing a linear

fee (equivalent to acting as if though having a power distribution G(c) = c(1−ξ)/ξ with

ξ = 0.4) gives the intermediary 99.8 percent of the profits he would get with the optimal

mechanism. Similar results were found for other distributions in Appendix B. This gives

rise to the conjecture that power distributions are a useful approximation in many cases,

even if the seller’s distribution is of a different kind.46

Quality Adjusted Price and Time On Market Thus far, we maintained the as-

sumption that objects (say, houses) are homogeneous, which we now relax. We assume

46One may further conjecture that the distributions for which linear fees are closer to optimality are
also the ones that are more invariant to changes of the buyer’s distribution. But these conjectures, of
course, remain to be shown.
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that everyone agrees that the objective value of a certain house is θ and that an indi-

vidual trader’s valuation for the house is θt, where t = v for a buyer and t = c for a

seller. Empirically observed prices p̂ are given by P̂ (c) = θP (c), where P (c) is the quality

adjusted price. Rutherford, Springer, and Yavas (2005) define the degree of overpricing

(DOP) as DOP = (P̂ (c) − θ)/θ. The quality adjusted price is thus P (c) = DOP + 1.

The price P (c) in our model can be interpreted as a quality adjusted price.47 Therefore,

our model can be interpreted e.g. as consisting of several separate submarkets that differ

only in their θ’s, which are publicly observable.

There is a large empirical literature addressing the relation between the quality ad-

justed listing price and the time on market.48 We now derive predictions on the relation

between the quality adjusted price and the time a house is on the market before being

taken off the list, which happens either because it is sold or because the seller leaves the

market without selling. Interestingly, the baseline model predicts that the average time

on market is the same for sold and unsold houses. The continuous time approximation

of the discrete time geometric distribution is described in Proposition 6.49

Proposition 6 (Homogeneous Market). For homogeneous houses the time on market of

sold and unsold houses has the same distribution. The continuous time approximation of

this distribution is exponential with the cumulative distribution function 1−exp(−(φ(p)+

η)t) and mean

T (p) =
1

φ(p) + η
, (16)

where φ is such that e−φ(p)τ = F (p). For a price p the ratio of houses ever sold, denoted

1 − F∞(p), is

1 − F∞(p) =
φ(p)

φ(p) + η
. (17)

47Since Rutherford, Springer, and Yavas (2005) estimate DOP as the average listing price a house with
certain characteristics has, this means that DOP has mean 0. This corresponds to a quality adjusted
price normalized to have mean 1.

48See e.g. Hendel, Nevo, and Ortalo-Magné (forthcoming), Rutherford, Springer, and Yavas (2005),
Genesove and Mayer (1997, 2001), Kang and Gardner (1989), Yavas and Yang (1995) and Larsen and
Park (1989).

49We provide the continuous time version of the distribution since it is more convenient for empirical
purposes. The discrete time version is derived in the formal proof in the Appendix.
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Consistent with our model the empirical literature (see e.g. Hendel, Nevo, and Ortalo-

Magné, forthcoming) finds that the quality adjusted listing price and the time on market

are positively correlated in cross-sectional data. One can also easily find an explanation

in our framework for the negative correlation observed in longitudinal data.50 In theory,

observing the relation between listing price p and the time on market T (p) on the one

hand and the ratio of houses sold, 1 − F∞(p), on the other hand would be sufficient to

estimate the steady state dynamic distribution F . The most straightforward approach

is solving (16) and (17) for φ(p) and η which results in φ(p) = (1 − F∞(p))/T (p) and

η = F∞(p)/T (p).51

The following numerical example, depicted in Fig. 8, illustrates the predictions our

model makes for dynamic type distributions F (v) = v and G(c) = c16. Note that the

two subfigures on the left are our assumptions on F and G, the other four subfigures

represent our predictions of the empirically observable functions.

Our results concerning the average time on market of sold and unsold houses can

be used in two ways. If one does have data on the time on market of unsold houses,

a comparison of these two variables can be used as an indicator of how well one has

corrected for heterogeneity of house characteristics (see next paragraph). If one does not

have this data for unsold houses, using the time on market of sold houses is enough for

the analysis so far.

Consider now the case where a data set includes heterogeneous submarkets and het-

erogeneity is not controlled for.

Proposition 7 (Heterogeneous Submarkets). If heterogeneous submarkets are in the

observed sample, the time on market is lower for sold than unsold houses.

50I.e. during a boom period houses are sold faster and at higher prices than during a recession. In our

framework this means that F and G change in booms such that both the average price
∫ P

−1(v̄)

c
P (c)dG(c)

increases and the overall average time on market
∫ P

−1(v̄)

c
T (P (c))dG(c) decreases.

51An empirical analysis would of course have to overcome further issues not present in our theoretical
framework.Some could be dealt with by straightforward extensions of our framework or standard econo-
metric tools, such as seasonal differences, the fact that it takes some (random) time until advertisements
for a house appear and potential buyers first view the house (this leads to the time on market not being
exponentially distributed, but having a peak for some t > 0), or truncation of data. Others will require
further thought.
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Intuitively, the result stems from the fact that houses that have a higher probability

of selling at the same price have a shorter time on market and are also relatively overrep-

resented in the set of sold houses. This result is consistent with Larsen and Park (1989)’s

observation that failing to include unsold houses may lead to a bias in the estimation of

time on market. Our analysis suggests that such a bias stems from heterogeneity. Prop. 7

naturally carries over to the case where times on market are estimated as averages over

all prices rather than for a specific price.

Inefficient Free Entry by Intermediaries Hsieh and Moretti (2003) perform an

empirical analysis of entry into real estate brokerage. Making the (empirically validated)

assumptions that real estate brokers use a fee setting mechanism and that the fee is 6

percent independently of the number of intermediaries in the industry, Hsieh and Moretti

demonstrate that inefficiently many agents enter in equilibrium.52 In particular, they

find that the number of transactions per intermediary and year decreases during real

estate booms and that booms are associated with significant new entry: the number of

intermediaries increases in proportion to the overall profits made in real estate brokerage.

We now show that a simple extension of our dynamic model provides a concise ex-

planation for both the findings of Hsieh and Moretti (2003) and for their assumptions.

Let κ > 0 be an individual’s per period opportunity cost of being a real estate broker.

Assuming that there is free entry into the industry, intermediaries will enter until ex-

pected per period profits equal κ. Denote the mass of active intermediaries under free

entry by ι∗.

Proposition 8. If under free entry there are sufficiently many intermediaries to match

every seller and every buyer, i.e. if ι∗ > σ, then the equilibrium mechanism is indepen-

dent of the opportunity cost of entry κ and, consequently, independent of the number of

active intermediaries ι∗.

In the dynamic game we maintained the assumption that ι > σ, which is obviously

the analog to the assumption ι∗ > σ under free entry. The proposition provides a simple

52For an earlier theoretical work on the potential inefficiency of free entry conditions, see Salop (1979)
and Mankiw and Whinston (1986).
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explanation for the observation that the fees of real estate brokers do not vary with

the number of active intermediaries or with profits per transaction (see e.g. Hsieh and

Moretti, 2003): The number of active intermediaries only affects the probability of a

match for an intermediary, but does not alter the optimal mechanism because it does

not affect the probability of a match for a buyer or a seller. Proposition 8 shows that

the comparative statics of our model with respect to the number of intermediaries are

similar to those of a model with complete information such as Diamond (1971) because

the equilibrium mechanisms are invariant with respect to this number in both types of

models.53

Heterogeneity among brokers can be easily accomodated for. As a first step, consider

heterogeneity with respect to the opportunity cost of entry. Index intermediaries with

ι such that κ(ι) increases. With excess supply the marginal intermediary ι∗ is given by

(σ/ι∗)Π = κ(ι∗), the mass of active brokers by ι∗, and brokers in the set I = [0, ι∗] are

active. As a second step, introduce heterogeneity with respect to productivity, measured

here as the relative matching probability r(ι). Intermediary i will be matched with

probability σr(i)/R(I) with R(I) :=
∫

ι∈I
r(ι)dι in case of

∫

ι∈I
dι > σ.

For r decreasing, we still have I = [0, ι∗]. For other shapes of r(ι) one can get e.g. the

phenomenon “middle class” doing real estate brokerage, described in Hsieh and Moretti

Appendix A: brokers in I∗ = [ι∗min, ι
∗

max] participate, where ι∗min > 0 and ι∗max < ∞ are

the marginal indifferent brokers.54 People with very low skills would not earn enough as

brokers, people with very high skills earn more in other jobs.

A rather simple explanation can be found for the empirically observed phenomenon of

“star brokers” – a small fraction of brokers who capture a large fraction of transactions:

r(ι) is large for a small mass of active brokers and small for a large mass.

53Recall that in a model à la Diamond (1971) all sellers charge the monopoly price independent of
the number of sellers.

54For r′ ≤ 0, an increase of Π will raise per period profits of the marginal intermediary i∗, and
therefore, average industry profits by even more. Average industry profits can also decrease with per
transaction profits as in the following example. Let initial per transaction profits be Π0. Assume r(ι) = 1
for ι < 1 and r(ι) = 2 for ι ≥ 1. Assume κ(ι) = σΠ0/2 + ǫ for ι < 2 with some small ǫ and κ(ι) = ∞
else. Initially, only agents in the interval I∗ = [1, 2] participate. Per year profits are σΠ0. An increase
to Π1 = (3/2)Π0 − ǫ results in the entry of low ability agents with ι ∈ [0, 1]. Average per intermediary
per period profits fall to σ(3/4)Π0.
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Observations of the distribution of per year profits among intermediaries would allow

to make inferences about r and κ,55 which would allow predictions about e.g. the effect

of the entry test for realtors56 or of a drop in real estate prices.

Brokers selling their own houses and FSBO Rutherford, Springer, and Yavas

(2005) and Levitt and Syverson (2008) observe that brokers selling their own houses

get on average higher prices than independent sellers selling comparable houses. Note

that from the perspective of our model, a broker selling his own house and houses for

sale by owners (FSBO) are the same.57 In this sense, similar evidence is provided by

Hendel, Nevo, and Ortalo-Magné (forthcoming), who compare prices of houses sold via

brokers and houses for sale by owners (FSBO) and find that prices achieved by FSBOs

are higher, though not significantly. We call both the broker who owns the house he is

selling and the owner who sells without a broker an integrated seller while an individual

who sells via an intermediary is called an independent seller. We now show briefly how a

simple extension of our dynamic model can shed new light on the price setting behavior

of integrated sellers.

Assume that both independent and integrated sellers enter their respective pools

in every period and are matched with a buyer with the same probability. While the

equilibrium will be determined by a more complicated model and its derivation will

require more details, we can make statements about the behavior of both types of sellers

without having to compute the equilibrium. The following analysis is based on the

assumption that both kinds of sellers face the same (endogenous) distribution of buyers

F . This is e.g. the case if buyers join the FSBO market and the intermediary market

55If the cumulative distribution function H of per year profits among intermediaries is observable, the
following reasoning applies. Under the assumption that r is weakly increasing and I∗ = [ι∗min, ι

∗
max], the

inverse of the cumulative distribution function is equal to H−1(x) = σr((ι∗max − ι∗min)x + ι∗min)/R(I∗)Π,
which should allow to recover r for the domain I∗. For the opportunity cost κ one can only infer that
it is weakly less than per year profits in I∗ and equal at the boundaries of the interval, ι∗min and ι∗max.
A change of I∗ over time (e.g. because of a change of Π) would allow for further estimates.

56E.g. for r weakly decreasing a test that excludes brokers with the highest opportunity costs would
be clearly welfare enhancing, a test that excludes the lowest opportunity cost intermediaries welfare
reducing. Otherwise the effect will depend on the specific forms of r and κ.

57This is since we abstract away from agency issues and institutional details such as the multiple
listings service (MLS), which only brokers can access.
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with equal probabilities.58

In a static setup, the optimal mechanism of an integrated seller is posting a price

(see Myerson (1981)). This integrated seller’s profits will exceed the joint profits of an

independent seller and an independent intermediary. However, its price Φ−1(c) will be

smaller than the price of an independent seller Φ−1(Γ(c)) because of the externality the

intermediary’s fee imposes, which is analogous to double marginalization. Interestingly,

dynamics can reverse this result: The integrated seller will have a higher dynamic cost

because his option value of not selling and staying in the market is higher than that for

an independent seller with the same static cost c̃. This explanation for the observed price

differences for houses sold by sellers via brokers and houses sold by independent sellers

is quite different from the principal-agent based explanations advanced by Rutherford,

Springer, and Yavas (2005) and Levitt and Syverson (2008). Note that our explanation

does not leave the open question why sellers are willing to write contracts with a marginal

fee of 6% (rather than close to 100%) if the agency problem is so severe.

Proposition 9. (a) An independent seller at the lower end of the distribution (c̃ = c̃)

sets a lower price than an integrated seller with the same static cost c̃.

(b) An independent seller at the upper end of the distribution (c̃ = c̃) sets a higher

price than an integrated seller with the same static cost c̃.

(c) If G has a monotone hazard rate, then there is a ˆ̃c ∈ (c̃, c̃) such that an integrated

seller sets a higher price than an independent seller with the same static cost iff

c̃ < ˆ̃c.

(d) The average prices set by integrated sellers can be higher than those set by inde-

pendent sellers even if their static entrant distributions g̃0 are the same.

Concerning the empirically testable implications of (a) and (b) note that while c̃ are

not (directly) observable, under the assumption that there is no selection effect (i.e. g̃0

58The argument is easiest if one assumes that overall the mass of owners is negligible for then F and
G are as given in the main text. The assumption is not crucial, though: If one assumes that owners
have positive measure and that buyers are randomly matched to an independent seller or an integrated
seller in every period, then F and G will be different from the expressions in the text, but they will
nonetheless determine PIS and PI as derived in the proof of the following proposition.
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is the same for integrated and independent sellers), the distribution of realized prices

corresponds to that of static costs c̃. Hence the statement can be taken to mean that

(a) the lowest prices among integrated sellers are higher than the lowest prices among

independent sellers and (b) the highest prices among integrated sellers are lower than the

highest prices among independent sellers.59 Part (d) of the Proposition shows that one

may observe brokers getting higher prices when selling their own houses even without

an agency problem and even without a selection effect.

Per Transaction Costs of Intermediation Instead of or in addition to assuming a

fixed cost of intermediation, let us now briefly consider the case where intermediation

services involve a variable (as well). We show that under the assumption of a power

distribution with c > 0 of the seller’s cost, all the previous results go through rather

nicely. Recall first that a power distribution G with c > 0 implies a negative fee ξ < 0, i.e.

a subsidy from the intermediary to the seller which we typically do not observe. However,

intermediaries also provide services (advertising, showing the house to potential buyers,

legal advice) we do not account and that are costly. Thus, the free of charge provision

of these services can be interpreted as a subsidy from the intermediary to the seller paid

in resources.

This is also consistent with the following observation. In the U.K. real estate brokers

typically charge a lower fee (2.5 percent) than in the U.S. but they do also provide less

services. Recall that for a power distribution a larger β implies a lower percentage fee ...

but also a smaller subsidy. Thus, assuming that the seller side both in the U.S. and the

UK are characterized by power distributions, this is consistent with βUK > βUS. This

implies ξUS < ξUK < 0, which is in turn consistent with the difference in service levels

provided by brokers.

59Note that (b) only holds if the same range of integrated and independent sellers enter the market
(i.e. [c̃, c̃] is the same). If free entry also applied for integrated sellers, one would expect more integrated
sellers to enter at the upper end of the support [c̃0, c̃0] since they do not have to pay fees.
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5.2 Other Applications

We now briefly discuss two other applications, intermediaries in auctions and stock bro-

kers.

Auction Houses and Auction Sites Auction houses like Sotheby’s and Christie’s

and auction internet sites like eBay set percentage fees60 and the seller then sets a

reservation price rather than a take-it-or-leave-it price. We now show that in a static

setup with one seller and many buyers this is an optimal mechanism by extending the

stage game to a setup with one intermediary, one seller, and many buyers.

As a preliminary, we first derive the intermediary optimal mechanism with many

buyers and possibly many sellers.61 Let NB andNS, respectively, be the number of buyers

and sellers, whose valuations vb and costs cs are independent draws from distributions

Fb with densities fb and supports [vb, vb] and distributions Gs with densities gs and

supports [cs, cs]. As before, we consider cases where virtual valuations Φb(vb) and the

virtual costs Γs(cs) are strictly increasing and we use b (s) exclusively to indicate a buyer

(seller). Order and relabel the realized virtual valuations in decreasing and virtual costs

in increasing order, i.e. Φ1 > Φ2 > .. > ΦNB
and Γ1 < Γ2 < .. < ΓNS

. Pair buyers and

sellers with equal index. The case where NB 6= NS can be easily dealt with by adding

fictitious traders.62 We define the Virtual-Walrasian allocation rule such that all pairs

with Φk ≥ Γk trade and all others do not. The Virtual-Walrasian quantity is the number

of trading pairs, formally K := max{k|Φk ≥ Γk}.

Lemma 1. The intermediary optimal mechanism that respects individual rationality and

incentive compatibility of buyers and sellers has a Virtual-Walrasian allocation rule and

gives zero expected utility to buyers with vb = vb and sellers with cs = cs.

For NB = NS = 1 the Virtual-Walrasian allocation rule reduces, of course, to the

60Prior to being convicted of collusion, this fee was 20 percent for Sotheby’s and Christie’s. Before
they changed to a regressive fee structure, eBay used to charge a linear fee of 5 Percent.

61See also Baliga and Vohra (2003).
62If there are less buyers than sellers, fill up the ranks of buyers with fictitious buyers who do not

trade for sure (i.e. Φk = −∞ for NB < k ≤ NS). If there are less sellers, use fictitious sellers with
Γk = ∞ for NS < k ≤ NB.
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intermediary optimal allocation rule of Myerson and Satterthwaite (1983).

Assume now that there is one seller (i.e. NS = 1) and that the NB > 1 buyers’

valuations are independently drawn from the identical distribution F with support [v, v].

With many buyers and one seller, the intermediary optimal allocation rule requires the

good to go to the buyer with the largest virtual valuation, provided this virtual valuation

exceeds the seller’s virtual cost.

Proposition 10. Assume the intermediary faces NB buyers whose valuations are i.i.d.

draws from F and one seller whose cost is drawn from G. Then the following is an

intermediary optimal mechanism. The intermediary sets the fee function ω(pS) = pS −
Ev[P

−1(v) | v ≥ pS], where pS is the final sale price. Then the seller sets the reserve

price p = P (c), and a standard auction ensues.

Letting ωα = pS −Ev[P
−1
α (v) | v ≥ pS] (and assuming monotone hazard rates) where

P−1
α (v) is as defined above Corollary 2 one can also implement the ex ante efficient

mechanism by setting α = α∗(NB), where α∗(NB) solves

∫ ∫

[Φ(y) − Γ(c)]pα(y, c)NBF (y)NB−1f(y)g(c)dcdy = 0

with Qα(y, c) = 0 if Φ(y, α) < Γ(c, α) and Qα(y, c) = 1 otherwise.63 For F and G

uniform on [0,1], α∗(1) = 0.25, α∗(2) = 0.215 and α∗(3) = 0.184. Thus, for the case

of one seller and many buyers an appropriately chosen fee setting mechanism followed

by reserve price setting by the seller and a standard auction implements the ex ante

efficient, direct mechanism Gresik and Satterthwaite (1989) analyze.

Collusion An issue we have abstracted from is collusion. The U.S. Department of

Justice uncovered commission fixing between Sotheby’s and Christie’s in the 1990s and

is currently investigating whether real estate agents are colluding (DOJ, 2007). Analyzing

how collusion would look like in our dynamic setup is therefore of particular interest and

relevance. For the two extreme cases where τ is either zero or infinite, the answer is

63See Gresik and Satterthwaite (1989) for the derivation of α∗(NB).
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simple. For τ → ∞ the probability of being rematched is zero. Therefore, the optimal

collusive mechanism, i.e. the mechanism that maximizes joint profits, is given by the

optimal mechanism in the static model derived in Section 3.1. For τ → 0 all the bilateral

matchings essentially become one multilateral, simultaneous matching of all buyers and

all sellers. An optimal mechanism for a monopolist, or equivalently for colluding firms, in

this setup is to post bid and ask prices at which sellers are allowed to sell and buyers are

allowed to buy, as we show in Proposition 11 below. Determining the optimal collusive

mechanism for intermediate values of τ requires solving a rather complicated dynamic

mechanism design problem, where the feasibility constraint is that only matched buyers

and sellers can trade in any given period. This is left for future research.

Stock Brokers Linear fees are widely used in stock brokerage. The empirical finance

literature describes two kinds of fees used: flat fees and percentage fees (see Conrad,

Johnson, and Wahal, 2001). One can think of stock markets where a broker willing to

sell looks at one buyer’s broker at at time. The short moment at which two brokers

look at each other can be interpreted as the period τ between subsequent rematching

(abstracting away from having both a buyer’s and a seller’s broker).64

An important reason why stock brokers may prefer percentage fees to (bid and ask)

price posting (see Section 5.3) may be the highly volatile nature of the value of the goods

(i.e. stocks) in the exchange of which they are engaged. This feature is arguably well

captured by our model, where the buyer’s and seller’s valuations v and c are stochastic.

Consequently, the market price exhibits substantial variability and price posting is not

optimal for the intermediary, as shown in Proposition 11 below, whereas percentage

fee setting is. Interestingly, the literature on market microstructure and intermediation

mainly focuses on price posting by brokers. For example, Gehrig (1993) studies a static

model with a monopolistic broker who quotes bid and ask prices. Similarly, Duffie,

Garleau, and Peddersen (2005) analyze market making by price setting intermediaries in

a dynamic setup, where the intermediaries’ search intensity is determined endogenously

and price posting is the exogenously given mechanism. An exception is the paper by

64We thank Mark Satterthwaite for providing us this interpretation.
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Duffie and Strulovici (2008), who provide a model with intermediaries in capital markets

that charge percentage fees.65 Another paper that departs from the assumption of price

posting is Parlour and Rajan (2003) who study an infinite horizon model with market

makers who quote bid-ask spreads rather than post bid and ask prices. This is obviously

related yet distinct from the percentage fees used in practice and the ones studied in the

present paper.

5.3 Alternative Mechanisms

We now consider in turn price posting and slotting allowances and relate them to the

intermediary optimal mechanism.

Price Posting Consider first price posting, which is widely used e.g. by used car

dealers and currency exchange offices: the intermediary posts an ask (or buyer) price pB

and a bid (or seller) price pS.66 The quantity traded is the minimum of the number of

buyers and sellers who are willing to trade at these prices, and the intermediary earns

the bid-ask spread pB − pS on each buyer-seller pair that trades.

Proposition 11. For expositional simplicity assume Φ′ > 1 and Γ′ > 1.

(a) If the intermediary is matched with one buyer and one seller at a time, the

optimal ask price pB and bid price pS are given by the equation system pB = Γ(pS) and

pS = Φ(pB), and price posting is never optimal for the intermediary.

(b) Consider price posting with N buyers and sellers with i.i.d. draws vi ∼ F and

ci ∼ G and let prices be given by Φ(pB) = Γ(pS) and 1 − F (pB) = G(pS). As N goes

to infinity (i) the optimal mechanism converges to a price posting mechanism with these

prices and (ii) the price posting mechanism with these prices converges to optimality.

65However, their focus is on capital mobility between markets and they assume the percentage fee
mechanism as exogenously given. Moreover, capital owners who wish to trade do not have any private
information, so that percentage fees can be charged directly on the surplus generated by a transaction.
See also Yavas (1992) who makes a similar assumption.

66Riley and Zeckhauser (1983) and Peck (1996) also look at the optimality of price posting mechanisms,
but in different setups and without intermediaries. The former relies on buyers’ ability to wait without
costs for a cheaper offer by the same seller, the latter assumes buyers with identical valuations for the
good choosing simultaneously between offers from multiple sellers. Gresik and Satterthwaite (1989)
compare the ex ante efficient mechanism with posted prices, which is also not an ex ante efficient
mechanism.
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(c) If the intermediary can store the good costlessly between subsequent rematchings,67

price posting with prices as in (b) is optimal for the intermediary.68

Intuitively, with one buyer and one seller, having to post two fixed prices is not

optimal since it takes away too much flexibility from the intermediary, e.g. price posting

excludes the possibility of allowing trade when both the buyer and the seller have a high

valuation. However, with many buyers and sellers, or with a storable good, the problem

of the intermediary can be separated into two separate problems: buying from sellers

and selling to buyers. For both problems, price posting is optimal Myerson (1981).

Prop. 11 (a) seems to stand in contradiction to the empirical observation that price

posting is often used by intermediaries.69 However, at a second glance, intermediaries

that post prices are the ones that either face liquid markets (b) or can store the good

(c).

For a seller and NB buyers i.i.d. draws vi ∼ F we get the following.70

Proposition 12. As NB approaches infinity, intermediary price posting and fee setting

are equivalent and intermediary optimal.

Slotting Allowances Real world retailers often require upfront payments by sellers

to allocate scarce shelf space and then charge a percentage fee on the revenue generated

67In particulary, he has no liquidity constraints, no storage constraints, his discount factor is 1, he
can have short positions of the good, and storage costs are zero. His only constraint is that he has to
buy and sell with the same probability.

68Our assumption on storing the good is essentially the same as Garman’s (1976) assumption of an
intermediary with an infinite inventory of cash and stock and Glosten and Milgrom’s (1985) assumption
of “zero costs associated with all short positions in cash and stock”. Both papers look at intermedi-
aries facing sequentially arriving traders (in stock markets), but in a very different setup and with a
very different focus: both assume the price posting mechanism as exogenously given, the former con-
siders non-strategic traders arriving in continuous time, the latter the bid-ask spread set by zero profit
intermediaries in the presence of insider trading.

69The result depends on Assumption 1. If one assumes instead that distributions do not overlap
and that there is a sufficiently large gap between the distributions of buyers and sellers (more precisely
Φ(v) > Γ(c̄)), then by Lemma 2 the intermediary always allows trade to occur and sets prices pB = v
and pS = c̄. However, this is not a sufficient explanation for the usage of price posting mechanisms:
trade does not occur every time a buyer and a seller meet an intermediary.

70Note that for an infinite number of buyers and fee setting any ω satisfying ω(v̄) = v̄ − Γ−1(v̄) and
inducing the seller to set the price v̄ would do. For instance the intermediary could just as well charge
a fixed fee v̄ − Γ−1(v̄).
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by the seller.71 We now show that this type of mechanism arises naturally as the inter-

mediary optimal mechanism when the intermediary faces several competing sellers but

cannot sell more than one unit. The latter may occur either because he only attracts

one buyer or because he is capacity constrained. Consider a static model with one buyer

and several sellers with i.i.d. draws ci ∼ G.

Proposition 13. The following two-stage mechanism is intermediary optimal:

Stage 1: The intermediary runs a standard auction (e.g. a second price) among the

sellers for the right to participate in the second stage.

Stage 2: The winner of stage 1 sets the price p = P (c), facing the fee function ω(p)

given in Proposition 1.

Of course, if the intermediary attracts several buyers whose valuations are i.i.d. draws

but is constrained by his physical capacity not to sell more than one unit, then the

mechanism in Proposition 13 is still intermediary optimal, provided the price set by the

seller in stage 2 is a reserve price in an optimal auction.

6 Conclusions

In this paper we study intermediation from an applied Bayesian mechanism design per-

spective, under the assumption that the intermediary has the bargaining power. We

find that fee setting mechanisms, which are widely used in practice, but so far little

understood in economics, are optimal for intermediaries in a wide array of settings, i.e.

maximize the intermediaries’ expected profits subject to buyers’ and sellers’ incentive and

individual rationality constraints. We show that these mechanisms are optimal in a static

model where one or more buyer(s) and one seller are matched to an intermediary, and

they are optimal for intermediaries in a dynamic model where in every period a buyer,

a seller and an intermediary are randomly matched, and where the valuations of buyers

and sellers are endogenously determined. We show also that the dynamic model with

random matching, in which each intermediary chooses an optimal mechanism, permits

an analytical solution. Perturbation analysis reveals that the equilibrium fees become

71See e.g. Sullivan (1997) or Marx and Schaffer (2007).
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smaller when the rematching probability increases, which contrasts with models with

complete information. Our baseline model can be applied to different industries with

intermediaries. In particular, our model can explain several stylized facts observed in

real estate brokerage. The dynamic model also provides a parsimonious explanation for

why vertically integrated sellers, e.g. intermediaries who sell houses they own, may set

higher prices than independent sellers, which is consistent with empirical evidence (see

e.g. Rutherford, Springer, and Yavas, 2005; Levitt and Syverson, 2008). Further research

on the optimal collusive mechanism in the dynamic model with random matching seems

particularly fruitful given the widespread suspicion that intermediaries like real estate

brokers set their fees collusively.

Appendix

A Proofs

Since we will refer to the properties of intermediary optimal mechanisms often, we sum-

marize Myerson and Satterthwaite (1983)’s Theorems 3 and 4 on intermediation in the

following lemma.

Lemma 2 (Myerson-Satterthwaite). An incentive compatible, interim individually ra-

tional mechanism is intermediary optimal if and only if it is such that (i) the good is

transferred iff Φ(v) ≥ Γ(c) and (ii) the seller with the highest cost c̄ and the buyer with

the lowest valuation v both have zero expected utility.

Proposition 1: Optimal fee.

Proof of Proposition 1. Even though a shorter proof can be obtained by first considering

the dominant strategy implementation, we will derive our results through the incentive

compatibility constraint because other proofs rely on the intermediate steps of this proof.

If through an appropriately chosen fee function ω(p) the seller with cost c can be

induced to set the price p = P (c), we know that we have an an intermediary optimal

mechanism because the buyer will accept the offer iff v ≥ P (c) ⇔ Φ(v) ≥ Γ(c). We
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first show that such a function ω(p) exists and is unique. Denote the expected payoff to

the seller of type c who sets the ’prescribed’ price P (c) as U(c) := (P (c) − ω(P (c)) −
c)(1−F (P (c))). By the Envelope Theorem (see e.g. the proof of Theorem 1 in Myerson

and Satterthwaite (1983) or Ch.5 in Krishna (2002)), for p = P (c) to be an equilibrium

strategy for the seller, U(c) has to satisfy

U(c) = U(c̄) +

∫ c̄

c

[1 − F (P (t))]dt =

∫ c̄

c

[1 − F (P (t))]dt, (18)

where the second equality follows because U(c̄) = 0. Moreover, since 1−F (P (c)) = 0 for

all c such that P (c) ≥ v̄ ⇔ c ≥ P−1(v̄) := Γ−1(Φ(v̄)), the upper limit of the integral can

be written as P−1(v̄). Inserting the definition of U(c) into (18) and rearranging yields

ω(P (c)) = P (c) − c−
∫ P−1(v̄)

c

1 − F (P (t))

1 − F (P (c))
dt. (19)

Substituting p = P (c) into (19) and integrating using this substitution yields

ω(p) = p− P−1(p) −
∫ v

p
(1 − F (v))[P−1(v)]′dv

1 − F (p)
= p−Ev[P

−1(v) | v ≥ p], (20)

where the second equality follows after integrating by parts (Ev[P
−1(v) | v ≥ p] =

(
∫ v̄

p
f(v)P−1(v)dv)/(1−F (p)) being the expectation of P−1(v) taken with respect to the

distribution F conditional on v being larger than p). Clearly, for given F and G the

function ω(p) is unique.

Next we show that given ω(p) the Nash equilibrium is essentially unique. (The

equilibrium is not unique merely because a seller of type c > P−1(v) can set any p > v.)

Since the buyer’s unique best response is to accept whenever p ≤ v, the problem of

the seller with cost c, given ω(p) = p − Ev[P
−1(v)|v ≥ p], is to choose p to maximize

(Ev[P
−1(v)|v ≥ p] − c)(1 − F (p). By construction of ω(p), the first order condition is

satisfied at p = P (c). Since at the first order condition, the second order condition

0 > −f(p)[P−1(p)]′ is also satisfied, uniqueness follows.

Proposition 2: Linear fee.

Proof of Proposition 2. By the same standard arguments leading to (18) we also get

U ′(c) = −q(c) almost everywhere because of incentive compatibility. Equating this
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with the derivative obtained from the definition U ′(c) = [(P (c) − ω(P (c))− c)q(c)]′ and

rearranging yields

Φ(P (c)) = P (c) − P (c) − ω(P (c)) − c

1 − ω′(P (c))
. (21)

(i) implies (ii) Take ω(p) = ξp + ζ . Then the right hand side of (21) becomes

(c + ζ)/(1 − ξ). Equating this with Γ(c) in order to achieve optimality according to

Lemma 2 (i) gives the differential equation g(c) = G(c)(1−ξ)/(ξc+ζ). With the condition

G(c) = 0 one obtains the expression in part (ii) of the proposition with β = (1 − ξ)/ξ

and c = −ζ/ξ. The upper bound of the support c̄ remains arbitrary.

(ii) implies (i) Observe that with the distribution G specified in part (ii) one has

Γ−1(p) = (1− ξ̂)p− ζ̂ with ξ̂ := 1/(β + 1) and ζ̂ := −c/(β + 1) and, therefore, P−1(p) =

Γ−1(Φ(p)) = (1 − ξ̂)Φ(p) − ζ̂. Take (21) and replace P (c) with p, c with P−1(p), and Φ

by its definition. Rearranging leads to

(1 − F (p))(κ′(p) − (1 − ξ̂)) − f(p)(p− ω(p) − ((1 − ξ̂)p− ζ̂)) = 0. (22)

Defining l(p) := p − ω(p) − ((1 − ξ̂)p − ζ̂) equation (22) leads to [l(p)(1 − F (p))]′ = 0.

From part (ii) of Proposition 2 follows that p − ω(p) is not singular at p = v̄ (actually

ω(v̄) = v̄ − P−1(v̄)). Since 1− F (v̄) = 0 it follows that l(p) ≡ 0, i.e. ω(p) = ξp+ ζ as in

part (i) Proposition 2 is satisfied with ξ = ξ̂ and ζ = ζ̂.

Proposition 3: Invariance and linearity of fees.

Proof of Proposition 3. The optimality condition (i) of Lemma 2 implies Φ(P (c)) = Γ(c).

If we want optimality to hold for arbitrary distributions F , and hence for arbitrary

functions P (c), equating the right hand side of (21) and Γ(c) yields Γ(c) = p − (p −
ω(p) − c)/(1 − ω′(p)) for arbitrary p. This differential equation in ω has the solution

ω(p) = p− (1 − ξ)(p− Γ(c)) − c (23)

defined up to a constant 1−ξ. If we want this to hold for any cwe need c−(1−ξ)Γ(c) = −ζ
for some constant ζ , and hence Γ(c) = (c + ζ)/(1 − ξ). Substituting this back to (23)

results in ω(p) = ξp+ζ , i.e. a linear fee. This also implies a generalized power distribution

G by Proposition 2.
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Corollary 2: Fee setting mechanism implements α-allocation rule.

Proof. Under the assumption (which implies regularity) that (1−F (v)/f(v) is decreasing

and G(c)/g(c) is increasing, the ex ante efficient allocation is as follows (see Myerson

and Satterthwaite (1983)). For a given α ∈ [0, 1] let Φα(v) = αΦ(v) + (1 − α)v and

Γα(c) = αΓ(c) + (1− α)c. Call an allocation rule an α-allocation rule if it induces trade

iff Φα(v) ≥ Γα(c). The ex ante efficient mechanism has an α∗-allocation rule, where α∗

is the smallest α such that
∫ ∫

[Φ(v)−Γ(c)]pα(v, c)f(v)g(c)dcdv ≥ 0, where Qα(v, c) = 0

if Φα(v) < Γα(c) and Qα(v, c) = 1 otherwise.

Since Φα(v) is increasing in v, any α-allocation rule can be implemented via a fee

setting mechanism if the seller with cost c can be induced to set the price p, where

p is such that Φα(p) = Γα(c). Inverting yields Pα(c) := Φ−1
α (Γα(c)). Accordingly,

P−1
α (p) := Γ−1

α (Φα(p)). Denote by ωα(p) the fee set by the intermediary under some

α-allocation rule, which leaves p − ωα(p) to the seller upon successful sale. The buyer

accepts any price offer p ≤ v and simply pays p. The same arguments as for Proposition

1 then establish the corollary.

Proposition 5: Effect of an infinitesimal perturbation.

Proof of Proposition 5. Since we only care about first-order effects, ĝ(c) = (1−ǫγ(c))g(c)
can be rewritten as

g =
1

1 + ǫγ
ĝ = (1 − ǫγ +O(ǫ2))ĝ, (24)

where O(ǫ2) stands for the second order effect. Taking a constant α with 1 + αǫ = σ,

this has to be equal to

(1 + αǫ)(1 − ǫ(1 − ρS(c)))ĝ(c) = (1 − ǫ[(1 − ρS(c)) − α] +O(ǫ2))ĝ(c). (25)

α has to be chosen as α =
∫

(1−ρS)ĝ so that the density functions add up to one. Hence

equating the right hand sides of (24) and (25) results in

γ(c) = F (Φ−1(Γ(c))) −
∫ c

c

F (Φ−1(Γ(t)))g(t)dt. (26)

We know that γ is increasing, γ and g are orthogonal (
∫

γg = 0), γ(c) < 0, and γ(c) > 0.
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(i) We will first show that (lnG(c))′ increases if ǫ increases:

∂2

∂ǫ∂c
ln Ĝ > 0. (27)

Using
∂

∂ǫ
Ĝ =

∂

∂ǫ

∫

(1 + ǫγ)g =

∫

γg, (28)

we get
∂

∂ǫ
ln Ĝ

∣

∣

∣

∣

ǫ=0

=
1

G

∫ c

c

g(c′)γ(c′)dc′. (29)

Taking the derivative with respect to c yields

∂

∂c

∂

∂ǫ
ln Ĝ

∣

∣

∣

∣

ǫ=0

=
g

G2

∫ c

c

g(c′)γ(c′)dc′ +
1

G
g(c)γ(c),

the sign of which is to be determined. Multiplying by the positive expression G2/g we

get

G(c)γ(c) −
∫ c

c

g(c′)γ(c′)dc′ =

∫ c

c

g(c′)[γ(c) − γ(c′)]dc′. (30)

The expression in the brackets is positive since γ′(c) > 0 and c > c′, therefore, the whole

expression is positive, which proves the statement

∂2

∂ǫ∂c
lnG > 0. (31)

(ii) As next we will prove that Γ is decreasing and Γ−1 increasing with ǫ. The following

analysis can be simplified by defining a further function ψ, such that

Ĝ(c) = (1 − ǫψ(c))G(c), (32)

The relation between ψ and γ is the following

gγ = −(Gψ)′ (33)

or

ψ = − 1

G

∫

gγ (34)

which is equal to the negative of the right hand side of (29). Therefore, ψ′ < 0 by the

argument in the previous section. We also know ψ(c̄) = 0, ψ ≥ 0.
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The derivative is

ĝ = g − ǫ(gψ +Gψ′) (35)

By definition

Γ̂
def
= c+

Ĝ

ĝ
= c +

[1 − ǫψ]G

[(1 − ǫψ) − ǫ(G/g)ψ′]g
= c+

(G/g)[1 − ǫψ]

g − ǫ(ψ + (G/g)ψ′)
. (36)

The Taylor expansion is

c+
G

g
[1 − ǫψ]

[

1 + ǫ(ψ +
G

g
ψ′)

]

+O(ǫ2) = c+
G

g

[

1 + ǫ
G

g
ψ′

]

+O(ǫ2) (37)

Using the definition of Γ̂ this gives us

Γ̂ = Γ + ǫ

(

G

g

)2

ψ′ +O(ǫ2). (38)

Since ψ′ is negative Γ̂ is decreasing with ǫ. The inverse of Γ̂ is

Γ̂−1 = Γ−1 − ǫ
(G/g)2ψ′

Γ′
+O(ǫ2). (39)

The fraction is negative since ψ′ < 0 and Γ is increasing by Myerson’s regularity assump-

tion. Therefore, for a perturbation with ǫ > 0 we have Γ̂−1 > Γ−1.

(iii) Next, we will look at the change of [Γ−1]′. Taking the derivative of (39) gives us

(Γ̂−1)′ = (Γ−1)′ − ǫ

[

(G/g)2ψ′

Γ′

]

′

+O(ǫ2) (40)

= (Γ−1)′ − ǫ
[2(G/g)g2

−Gg′

g2 ψ′ − (G
g
)2ψ′′]Γ′ − (G

g
)2ψ′Γ′′

(Γ′)2
+O(ǫ2) (41)

The sign of the multiplier of ǫ is ambiguous. For instance, since ψ′ < 0, for Γ′′ sufficiently

negative, (Γ̂−1)′ is increasing with ǫ. However, for Γ′′ sufficiently large, we have the

opposite effect.

We can also make the analysis for Γ′′ = 0 (or close to zero), which means that we

have a power distribution and linear fees (or are close to it). After some algebra the

expression in brackets in (41) can be transformed to

−3Gγ(g2 −Gg′) + 3g

∫

gγ − 2
Gg′

g

∫

gγ +G2gγ′ −Ggγ. (42)

If this is negative then [Γ−1]′ will be larger if ǫ increases, that is we have a flatter fee.
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However, one can find examples of power distributions where this condition is not

satisfied. Take G = cβ, F = 1 − (1 − v)α, which results in linear virtual valuation

functions Γ and Φ. E.g. for α = 3 and β = 3, the condition is not satisfied for certain

values of c, the sign of

1

4860

−225 + 1280 c4 − 3840 c3 − 363 c2 + 1920 c

c2
(43)

is different for different values of c as depicted in Fig. 9.

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.2 0.3 0.4 0.5 0.6 0.7
c

Figure 9: For α = 2 and β = 3 the expression in Eq. (42) has different signs for different
values of c.

Proposition 6: Time on market with one homogeneous good.

Proof of Proposition 6. Discrete Time. Consider first a cohort of sellers, who entered

the market at some point t, normalized to t = 0, and offered their houses for some

price p. Label the number of rematchings since t = 0 with k := t/τ and the expected

number of sellers in the cohort staying in the market at the beginning with N0 and in

subsequent periods with Nk. The probability that a seller stays in the market until the
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next rematching is the probability that he cannot sell times the probability that he does

not drop out for exogenous reasons, i.e. ǫF (p) with ǫ := e−ητ . The number of sellers

in period k is hence Nk = (ǫF (p))kN0. Time on market for the total population of

both sold and unsold houses follows hence a geometric distribution with the cumulative

distribution function 1− (ǫF (p))t/τ and mean T (p) = τ/(1− ǫF (p)). Denote the number

of sellers who leave the market in period k because they sell as N s
k and those who leave

with unsold houses as Nu
k . Clearly, N s

k = (1 − F (p))Nk and Nu
k = ǫNk. Therefore, the

ratio of sellers able to sell is (1 − F (p))/(1 − ǫF (p)). Now consider only the subsample

of sellers who managed to sell their houses. Since N s
k is just a constant factor smaller

than Nk, the distribution of time on market of this subsample is the same as for the

total population. Hence the cumulative distribution function is also 1 − (ǫF (p))k and

the mean time on market for sold houses is T s(p) = 1/(1 − ǫF (p)). The same reasoning

applies for sellers who did not sell their houses, so that T u(p) = 1/(1 − ǫF (p)) is the

mean time on market for unsold houses as well. Since we are looking at a market in

a stationary equilibrium, in every period the same number of N0 sellers enters and the

previous argument carries over to a setup where cohorts of sellers enter every period

rather than only one cohort entering at t = 0.

Continuous Time. The same logic applies to the continuous time approximation of

the distribution. Denote the mass of sellers in the cohort at period t = 0 as N(0).

The number of sellers remaining in the market in period t is N(t) = N(0)e−(φ+η)t

dropping the argument p in φ(p). In each period dN s(t) = N(t)φdt houses are sold

and dNu(t) = N(t)ηdt drop out unsold. Cumulatively, we have N s(t) =
∫ t

0
dN s(t′) =

(φ/(φ + η)) [N(0) −N(t)] and Nu(t) =
∫ t

0
dNu(t′) = (η/(φ + η)) [N(0) −N(t)]. After

infinitely many periods, fraction 1 − F∞ := N s(∞)/N(0) = φ/(φ + η) of houses have

been sold. The average time on market for sold houses is

T s =

∫

∞

0
tdN s(t)

∫

∞

0
dN s(t)

= − ∂

∂φ
ln

∫

∞

0

e−(φ+η)tdt = − ∂

∂φ
ln

1

φ+ η
=

1

φ+ η
.

By the same logic, the average time on market of unsold houses is T u = 1/(φ+ η).
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Proposition 7: Time on market in heterogeneous submarkets.

Proof of Proposition 7. Consider multiple submarkets, indexed by i, with different prob-

abilities of sale φi(p). Houses of each submarket are represented with weight wi in the

total sample. Taking averages over submarkets, the mean time on market for sold T s(p)

and unsold T u(p) houses is

T s =

(

∑

i

wi
φi

φi + η

1

φi + η

)(

∑

i

wi
φi

φi + η

)

−1

,

T u =

(

∑

i

wi
η

φi + η

1

φi + η

)(

∑

i

wi
η

φi + η

)

−1

,

the parameter p being dropped. The ratio of the two means is

T u

T s
=

∑

i wi
η

(φi+η)2

∑

j wj
φj

φj+η
∑

i wi
φi

(φi+η)2

∑

j wj
η

φj+η

=:
N

D
.

The difference between the numerator N and the denominator D is

N −D = η
∑

ij

wiwj
φj − φi

(φi + η)2(φj + η)
,

= −η
∑

ij

wiwj
φj − φi

(φi + η)(φj + η)2
,

where the second equation comes from interchanging the summation variables. Adding

the two expressions for N −D one gets

2(N −D) = η
∑

ij

wiwj
(φj − φi)

2

(φi + η)2(φj + η)2
≥ 0 ,

hence T u ≥ T s. The inequality is strict for heterogeneous submarkets.

Proposition 8: Invariant Mechanisms.

Proof of Proposition 8. Denote an intermediary’s expected profit in a given period if

matched to a buyer and a seller by Π :=
∫ v

v

∫ c

c
max{0,Φ(v)−Γ(c)}f(v)g(c)dcdv > 0. (If

unmatched, then his per period profit is 0.) Provided ι∗ > σ, each active intermediary’s

expected per period probability of being matched with a buyer and a seller is σ/ι∗
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and his per period profit is (σ/ι∗)Π. The equilibrium number of intermediaries in the

market is given by (σ/ι∗)Π = κ under free entry. Note that changes in ι∗ only affect,

adversely, the volume of transactions per intermediary and thereby expected equilibrium

profit per intermediary. Since every buyer and seller is matched with probability 1 in

every period regardless of whether the number of intermediaries is, this leaves also every

intermediary’s mechanism design problem in every period unaffected. Therefore, the

equilibrium mechanisms intermediaries employ do not vary as ι∗ changes, provided only

ι∗ is not smaller than σ.72 Therefore, business stealing is the only effect of entry, so that

free entry leads to excessive entry.

Proposition 9: Integrated Intermediary-Seller and Expected Prices.

Proof of Proposition 9. Denote, respectively, by WS(c̃) and WI(c̃) the expected contin-

uation payoff of staying in the market (i.e. when not selling) of a seller with static type

c̃ who sells via an intermediary and of an integrated seller of the same type who sells

directly. Their dynamic types are S(c̃) = c̃ + δWS(c̃) and SI(c̃) := c̃ + δWI(c̃). Now

WI(c̃) > WS(c̃) holds for all c̃ ∈ [c̃, c̃]. To see this, notice that the integrated seller

always has the option of setting the same price as the independent seller, in which case

they both sell with the same probability. Because the integrated seller does not have

to pay a fee, it follows (via a revealed preference argument if their prices differ) that

in every period the integrated seller’s expected payoff exceeds the expected payoff of an

independent seller. Consequently, WI(c̃) > WS(c̃).

(a) The independent seller sets the price P̃ (c̃) := P (S(c̃)) = Φ−1(Γ(c̃ + δWS(c̃)))

and the integrated seller sets the price P̃I(c̃) := Φ−1(c̃ + δWI(c̃)), where Φ and Γ are

derived from the distributions of the dynamic types of buyers and sellers F and G that

are endogenous to the model. Since Γ(c) = c, Γ(c̃+ δWS(c̃)) = c̃+ δWS(c̃) < c̃+ δWI(c̃).

Since Φ−1 is increasing, this implies P̃I(c̃) > P̃ (c̃).

(b) In equilibrium, the mechanism is such that an independent seller at the upper end

72Note that if ι∗ < σ were the case, then the equilibrium mechanisms would vary with ι∗ since buyers
and sellers are now matched with probability ι∗/σ < 1. The equilibrium number of intermediaries is
then given by (σ/ι∗)Π̂(ι∗) = κ where Π̂(ι) is some decreasing function that determines the equilibrium
per transaction profits of an intermediary.
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of the distribution c̃ has utility zero and sells with probability zero. Hence, WS(c̃) = 0.

Therefore, an integrated seller with cost c̃ will sell with probability zero if he sets a price

P̃I(c̃) ≥ P̃ (c̃), in which case his option value WI(c̃) would be equal to 0. But then his

price would have to be lower than that of a seller, since Φ−1(c̃+WI(c̃)) = Φ−1(c̃) < P̃ (c̃),

which is a contradiction. Hence P̃I(c̃) < P̃ (c̃) follows.

(c) Parts (a) and (b) together with continuity imply that there will be at least one

point of intersection between P̃I(c̃) and P̃ (c̃). Let ˆ̃ci be some such point. We now show

that Γ′ > 1 implies that P̃ ′(ˆ̃ci) > P̃ ′

I(ˆ̃ci) at every point of intersection ˆ̃ci. This in turn

implies that P̃ (c̃) ≥ P̃I(c̃) for all c̃ above the first (i.e. smallest) point of intersection.

Notice first that P̃ ′(ˆ̃ci) = Φ−1′(Γ(ˆ̃ci + δWS(ˆ̃ci)))Γ
′(ˆ̃ci + δWS(ˆ̃ci))(1 + δW ′

S(ˆ̃ci)) and

P̃ ′

I(ˆ̃ci) = Φ−1′(ˆ̃ci+δWI(ˆ̃ci))(1+δW ′

I(ˆ̃ci)). Since prices are the same, the arguments of Φ−1′

in both expressions, and hence Φ−1′ in both expressions, must be the same. Given the

assumption Γ′ > 1, the result thus follows if we can show that 1+δW ′

S(ˆ̃ci) ≥ 1+δW ′

I(ˆ̃ci).

Recall that W ′

S(ˆ̃ci) = −ρS(ˆ̃ci)/(1 − (1 − ρS(ˆ̃ci))δ), where ρS(ˆ̃ci) = 1 − F (P̃ (ˆ̃ci)). By

analogous arguments, W ′

I(ˆ̃ci) = −ρI(ˆ̃ci)/(1− (1−ρI(ˆ̃ci))δ), where ρI(ˆ̃ci) = 1−F (P̃I(ˆ̃ci)).

Since P̃ (ˆ̃ci) = P̃I(ˆ̃ci) at every point of intersection, ρS(ˆ̃ci) = ρI(ˆ̃ci) and δW ′

S(ˆ̃ci) = δW ′

I(ˆ̃ci)

follows. This completes the proof that P̃ (c̃) ≥ P̃I(c̃) for all c̃ above the first (i.e. smallest)

point of intersection.

(d) Consider the model of Subsection 4.1, where F (v) = 2v − 1 for v ∈ [1/2, 1] and

G(c) = 2c for c ∈ [0, 1/2]. Consequently in equilibrium the independent seller with

dynamic cost c sets the price P (c) = c+1/2. Since c = S(c̃), the independent seller with

the static cost c̃ sets the price P̃ (c̃) = S(c̃) + 1
2

= 1
2δ

(

1 + δ −
√

(1 − δ)(1 + δ − 4c̃δ)
)

.

The value function for an integrated seller is V (c̃) = maxp{(1−F (p))(p−c̃)+F (p)δV (c̃)},
where the first (second) term on the right hand side is the payoff in case of a sale

(no sale). Rearranging yields V (c̃) = maxp

{

1−F (p)
1−δF (p)

(p− c̃)
}

= maxp

{

2(1−p)
1+δ−2δp

(p− c̃)
}

,

where the second equality follows from F being uniform. This is maximized at P̃I(c̃) =
1+δ−

√
(1−δ)(1+δ−2c̃δ)

2δ
. In what follows we assume that the distribution of all integrated

sellers’ static costs is the same as that of independent sellers, so that its density is (13),

but that the aggregate measure of all integrated sellers is still negligible. This permits

a comparison of expected prices. Using g̃0(c̃) as given in (13), the difference in expected
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values E[P̃I − P̃ ] can be computed. It is straightforward to find conditions such that

E[P̃I − P̃ ] > 0. For example, E[P̃I − P̃ ] > 0 if τ = 1, η = 1/10 and δ = 4/5(⇔ r =

− ln(4/5) − 1/10). Numerical simulations reveal that E[P̃I − P̃ ] > 0 for any δ ≥ 0.7.

Lemma 1: Optimal mechanism with many buyers and sellers.

Sketch of the Proof of Lemma 1. A direct mechanism asks buyers and sellers to report

their valuations and costs. Denoting by (v, c) a collection of such reports with v =

(v1, .., vNB
) and c = (c1, .., cNS

), the direct mechanism is then characterized by the prob-

ability Qb(v, c) that b gets a unit of the good and Qs(c,v) that s produces a unit of the

good for b = 1, .., NB and s = 1, .., NS and by the payments Mb(v, c) it asks from buyers

and the payments Ms(c,v) it makes to sellers. Clearly, a mechanism is only feasible if for

all (v, c),
∑NB

b=1Qb(v, c) ≤∑NS

s=1Qs(c,v). Let Q be the collection of these probabilities.

We refer to Q as the allocation rule of the mechanism.

We only sketch the proof, a fully detailed version of which is available upon request.

Lengthy, though completely standard arguments (see e.g. Krishna, 2002) can be applied

to show that a revenue (or payoff) equivalence theorem holds. Formally, mb(vb) =

mb(vb) + qb(vb)vb −
∫ vb

vb
qb(t)dt and ms(cs) = ms(cs) + qs(cs)cs −

∫ c̄s

cs
qs(t)dt for all c, v,

lower case functions standing for expectations about all others’ valuations and costs (e.g.

mb(vb) := Ev−b,c[Mb(v, c)]). Again, by standard arguments, this implies E[mb(vb)] =

mb(vb) +E[Φb(vb)qb(vb)] and E[ms(cs)] = ms(c̄s) +E[Γs(cs)qs(cs)]. A profit maximizing

intermediary will make the individual rationality constraint just binding, therefore, his

expected profit
∑NB

b=1E[mb(vb)] −
∑NS

s=1E[ms(cs)] is

∫

X

{

NB
∑

b=1

Φb(vb)Qb(v, c) −
NS
∑

s=1

Γs(cs)Qs(c,v)

}

f(v)g(c)dvdc, (44)

where f(v) and g(c) are the joint densities of all buyers and sellers, respectively, and X

is the product set containing all (v, c). Inspection of the term in curly brackets reveals

that the profit can be maximized point by point by implementing the Virtual-Walrasian

allocation for each realization (v, c).
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Proposition 10: Intermediary optimal auction.

Proof of Proposition 10. It is sufficient to prove our statement for a second price auction,

since by the revenue equivalence theorem it then also holds for any standard auction.73

So consider a second price auction where the seller faces the fee function ω(pS) levied on

the sale price pS. The seller reports his cost as ĉ and the intermediary sets the reservation

price P (ĉ). This seller’s expected profit is

NB

{

(P (ĉ) − ω(P (ĉ)))(1 − F (P (ĉ)))F (P (ĉ))NB−1

+

∫ v

P (ĉ)

(y − ω(y))(1− F (y))(NB − 1)F (y)NB−2f(y)dy

}

+ cF (P (ĉ))NB

because if the reserve price P (ĉ) is binding, the sale price is pS = P (ĉ), which explains

the first ω(.) term. If the reserve is not binding, the sale price is the second highest bid

y, and this explains the second ω(.); see also Krishna (2002, p.25). Note that the good

is sold to the buyer with the largest virtual valuation, provided this is larger than the

reserve p.

For truth telling to be an equilibrium, the first order condition with respect to ĉ has

to be satisfied at ĉ = c. With some algebra, the first order condition can be rearranged

to

(1 − ω′(P (c)))(1 − F (P (c))) − (P (c) − ω(P (c))− c)f(P (c)) = 0.

As (19) is the solution to this differential equation, it follows from the proof of

Proposition 1 that the fee structure with the fee function ω(pS) = p−Ev[P
−1(v) | v ≥ pS]

induces the seller to set the intermediary the reserve in the intermediary optimal way.

Thus, the mechanism described in Proposition 10 is the intermediary optimal allocation

rule.

Proposition 11: Non-optimality of price posting mechanisms.

Proof of Proposition 11. Part (a): The intermediary’s expected profit with price posting

is (pB − pS)(1 − F (pB))G(pS). The assumptions about the inverse hazard rates ensure

73It follows from Lemma 3 in Myerson (1981) that all standard auction formats will have the same
expected revenue and indeed the same reserve price; see also Milgrom (2004, Ch.3) or Krishna (2002,
Ch.5).
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concavity of the profit function. Therefore, the unique maximum is given by the first

order conditions. Taking derivatives with respect to pB and pS yields pS = Φ(pB) and

pB = Γ(pS).

We complete the proof by showing that trade with price posting neither implies nor is

implied by trade in the intermediary optimal mechanism of Myerson and Satterthwaite

for arbitrary distributions F and G.

Trade with price posting, no trade with the intermediary optimal mechanism. Take

a buyer and a seller for whom trade just occurs with price setting, i.e. valuation pB

and cost pS. We know that a profit maximizing intermediary will always set pB > pS.

Combining this with the first order conditions we get Φ(pB) = pS < pB = Γ(pS). This

implies by Lemma 2 (i) that no trade occurs with the optimal mechanism for valuation

pB and cost pS.

Trade with the intermediary optimal mechanism, no trade with price posting. Take

the lowest cost seller with cost c and a buyer with valuation v′ such that trade just

occurs with the optimal mechanism, i.e. Φ(v′) = Γ(c). As pS > c must hold for positive

probabilities of trade with price posting, we have Φ(v′) = Γ(c) = c < pS = Φ(pB). This

implies v′ < pB and hence no trade with price posting.

Part (b): Index the realized valuations in decreasing and costs in increasing order.

To avoid dealing separately with the special case where all buyers and sellers trade, add

a fictitious buyer who will never trade with vN+1 = −∞ and a fictitious seller with

cN+1 = ∞.74 Denote the Virtual-Walrasian quantity as defined before Lemma 1 as

K := max{i|Φ(vi) ≥ Γ(ci)}.
(i) We consider the case where plimN→∞

K/N < 1, i.e. not all buyers and sellers

trade in the limit. For plimN→∞
K/N = 1 the proof is similar and therefore omitted.

It can be easily shown that for a finite number of buyers and sellers a dominant

strategy implementation of the Virtual-Walrasian allocation rule is optimal: everyone

reports their valuations/costs, a buyer pays the minimal valuation which would have

been sufficient for him to get the good, the seller gets analogously the maximal cost.

74The number of buyers and sellers being unequal could be dealt with in a similar fashion. If there
are e.g. less sellers than buyers, the missing sellers can be filled up with fictitious sellers.
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Formally, a buyer pays max{vK+1,Φ
−1(Γ(cK))} and a seller gets min{cK+1,Γ

−1(Φ(vK))}.
The valuation of the marginal trading and non-trading buyers and the marginal

seller’s cost plus the spread charged by the intermediary converge in probability to the

same value, which we denote as pB:

plim
N→∞

vK = plim
N→∞

vK+1 = plim
N→∞

Φ−1(Γ(cK)) =: pB. (45)

Similarly,

plim
N→∞

cK = plim
N→∞

cK+1 = plim
N→∞

Γ−1(Φ(vK)) =: pS. (46)

For the fraction of buyers and sellers who trade we have

plim
N→∞

K

N
= plim

N→∞

max{i|vi ≥ pB}
N

= 1 − F (pB), (47)

plim
N→∞

K

N
= plim

N→∞

max{i|ci ≥ pS}
N

= G(pS). (48)

(45), (46), (47), and (48) imply that the optimal mechanism converges to price posting

with pB and pS that satisfy Φ(pB) = Γ(pS) and 1 − F (pB) = G(pS).

(ii) Define the number of buyers willing to trade as kb := max{i|vi ≥ pB}, and for

the sellers ks := max{i|ci ≤ pS}. By 1 − F (pB) = G(pS)

plim
N→∞

kb

N
= 1 − F (pB) = G(pS) = plim

N→∞

ks

N
.

By Φ(pB) = Γ(pS) we have Φ(vkb
) ≥ Φ(pB) = Γ(pS) ≥ Γ(cks

) and by analogy Φ(vkb+1) <

Γ(cks+1). Therefore, the fraction of traded quantity is in the limit

plim
N→∞

min{kb, ks}
N

= plim
N→∞

max{i|Φ(vi) ≥ Γ(ci)}
N

def
= plim

N→∞

K

N
,

which is the fraction of the Virtual-Walrasian quantity. Further, it is easy to show

that this mechanism is incentive compatible and gives zero utility to the most inefficient

agents. Therefore, by Lemma 1 it maximizes the intermediary’s profit.

Part (c): The intermediary can store the good costlessly in an infinite horizon setup

and only has to make sure that he buys and sells with the same probability. Hence his

problem is the same as if all buyers and sellers arrived at the same time. Therefore, by

(b), price posting is optimal with the same prices as given in (b).
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Proposition 12: Fee setting and price posting mechanism for one seller and infinite

number of buyers.

Proof of Proposition 12. As NB converges to infinity, the highest bid almost surely con-

verges to v̄. Hence we are back to the one sided incomplete information problem. By

Myerson (1981) the optimal mechanism is to post a price pS = Γ−1(v̄) for the seller

and extract full rents from the buyer with pB = v̄. This can also be represented as

a fee setting mechanism with ω(p) = p[1 − Γ−1(v̄)/v̄], which induces the seller to set

P (c) = v̄.

Proposition 13: Slotting Allowances.

Proof of Proposition 13. In optimum, trade occurs between the lowest cost seller and the

buyer if and only if this seller’s virtual cost is less than the buyer’s virtual valuation (see

Lemma 1). The fee ω(p) of Proposition 1 makes sure that the seller active in stage 2 sets

the price in exactly such a way that the buyer buys if and only if Φ(v) ≥ Γ(c). Denote

a seller’s stage 2 expected payoff as US(c) (under the fee ω). It is a dominant strategy

in a second-price auction for a seller to bid US(c) in stage 1. Since U ′

S(c) > 0 whenever

US(c) > 0, a second price auction (or in fact any standard auction) in stage 1 allocates

the right to set the price efficiently, i.e. to the lowest virtual cost seller. (Notice that all

those types of sellers for whom US(c) = 0 will set such a high price in stage 2 that they

will never sell. Therefore, it is immaterial whether a winner is determined or not if every

seller bids zero in stage 1.) Consequently, the mechanism implements the intermediary

optimal allocation rule. Moreover, the expected payoffs of sellers with costs c and the

buyer with valuation v is zero.

B Robustness of Linear Fees

In the following, we will make a semi-formal argument in favor of the robustness of

linear fees, i.e. that they perform well even if the seller’s cost is not drawn from a power

distribution. Alternatively, this can be interpreted as arguing in favor of using a power

distribution as an approximation of another distribution G. For analytical convenience,
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we assume that the buyer’s valuation is drawn from the uniform on [0,1], so that given

the linear fee ξ the seller’s optimal price is p(ξ, c) = 1/2 + c/(2ξ) independently of the

distribution Gk. We consider the following four different distributions of c on [0,1]:

(i) GH(c) = c2(3 − 2c) with gH(c) = 6c(1 − c) and ΓH(c) = c
1−c

9−8c
6

(ii) GT (c) = 2c− c2 with gT (c) = 2(1 − c) and ΓT (c) = c
1−c

4−2c
2

(iii) GC(c) = 3(c− c3/3)/2 with gC(c) = 3(1 − c2)/2 and ΓC(c) = 2c(3−2c2

1−c2

(iv) GO(c) = 2c3/2/3 − 2c5/2/5 with gO(c) = 15c1/2(1 − c)/4 and ΓO(c) = c
1−c

25−21c
15

.

Observe that all of these satisfy increasing virtual costs. Denote by Π∗

Gk
:= Ev,c[Φ−

Γk | Φ − Γk > 0] the intermediary’s expected profit under the optimal mechanism

when the distribution is Gk and by ΠL
Gk

= maxξ(1 − ξ)
∫ ξ

0
p(ξ, c)(1 − p(ξ, c))gk(c)dc the

intermediary’s expected profit under the same distribution when using the linear fee ξ

optimally with k ∈ {H, T, C,O}. Quite interestingly, for all examples ΠL
Gk
> 0.9979Π∗

GK
.

For these examples, and it seems reasonable to conjecture also for others, even if the

intermediary merely uses an optimal linear mechanism he only loses very little of the

profit he could achieve using an optimal mechanism. Though farther analysis is certainly

warranted, we find this result quite remarkable.

C The General Mechanism Design Problem

Preliminaries. We first define the ironed virtual valuations Φ and Γ, following the

procedure in Myerson (1981, p.68). For the buyer define

Jb(q) := conv

∫ q

0

Φ(F−1(r))dr,

where conv stands for the convex hull of a function. The ironed virtual valuation function

of the buyer can now be defined as Φ(v) = J ′

b(F (v)). It is easy to check that Φ(v) = Φ(v)

wherever Φ is strictly increasing.

For the seller, construct the ironed virtual cost function in a similar way by defining

Js(q) := conv

∫ q

0

Γ(G−1(r))dr,

and the ironed virtual cost function as Γ(c) = J ′

s(G(c)).



C THE GENERAL MECHANISM DESIGN PROBLEM 64

Lemma 3. In the general case (without Myerson’s regularity assumption), it is optimal

for the intermediary to allow trade iff Φ(v) ≥ Γ(c).

Proof. By the same logic as Myerson’s (1981) theorem on p. 69.

Optimal Fee Setting Mechanism. The easiest way to derive the optimal fee is by a

brief detour through the dominant strategy implementation of the optimal allocation rule.

Similarly to Myerson and Satterthwaite (1983, p.280), we can implement the allocation

rule with dominant strategies in the general case by letting the buyer pay P (c) :=

Φ
−1

(Γ(c)) and the seller get P
−1

(v) := Γ
−1

(Φ(v)) in case of trade, where the inverses are

redefined as

Φ
−1

(x) := min{v|v ≥ v and Φ(v) ≥ x}, (49)

Γ
−1

(x) := max{c|c ≤ c and Γ(c) ≤ x}. (50)

Without trade, both get 0. We can now use the same logic as in the main text to derive

the optimal fee setting mechanism. The dominant strategy implementation already gives

us the right price for the buyer, P (c). To make sure that the seller’s payment only

depends on c, we have to take expectation of P
−1

(v), which he gets in the dominant

strategy implementation. The net price the seller gets is Ev[P
−1

(v)|v ≥ P (c)], since we

have to take expectations conditional on trade taking place. The optimal fee is the gross

minus the net price, in the indirect mechanism representation (using p rather than P (c))

this is

ω(p) = p− Ev[P
−1

(v)|v ≥ p] (51)

for p ≤ v and any ω(p) ≥ v − p else. This is the same as in the main text, except that

we are using ironed virtual valuations. If Φ(v) > Γ(c) (Assumption 1 violated), the fee

becomes

ω(p) = p− Ev[P
−1

(v)|v ≥ p] +
{

E[P
−1

(v)|v ≥ P (c)] − P (c)
}

(52)

where the expression in braces makes sure that c sellers have no informational rents (see

Lemma 2 (ii)).
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The price paid by the buyer, P (c) is a left continuous function (the discontinuities

being determined by the discontinuities of Φ
−1

) with horizontal intervals where Γ is

horizontal. The inverse P
−1

(v) is a right continuous function (discontinuities given by

Γ
−1

) with horizontal intervals where Φ is horizontal
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