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Abstract

This paper studies the learning process carried out by two agents who
are involved in many games. As distinguishing all games can be too
costly (require too much reasoning resources) agents might partition the
set of all games into analogy classes. Partitions of higher cardinality are
more costly. A process of simultaneous learning of actions and partitions
is presented and equilibrium partitions and action choices characterized.
Learning across games can destabilize strict Nash equilibria and stabilize
equilibria in weakly dominated strategies as well as mixed equilibria in
2� 2 Coordination games even for arbitrarily small reasoning costs. The
model is also able to explain experimental �ndings from e.g. the Traveler�s
dilemma or deviations from subgame perfection in Bargaining Games.
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1 Introduction

Economic agents are involved in many games. Some will be quite distinct but
many will share a basic structure (e.g. have the same set of actions) or be
similar along other dimensions. A priori games can be similar with respect to
the payo¤s at stake, the frequency with which they occur, the context of the
game (work, leisure, time of day/year...), the people one interacts with (friends,
family, colleagues, strangers...), the nature of strategic interaction, or the social
norms and conventions involved. Distinguishing all games at all times requires
a huge amount of alertness or reasoning e¤ort. Consequently it is natural to
assume that agents might partition the set of all games into analogy classes, i.e.
subsets of games they see as analogous.
In this paper we study learning across games, i.e. decision makers that face

many di¤erent games and simultaneously learn which actions to choose and how
to partition the set of all games. Our approach does not presume an exogenous
measure of similarity nor do we make any assumption about what agents will
perceive as analogous. Instead we focus on a much more instrumental view of
decision-making and ask the question which games do agents learn to discrim-
inate. For most of the paper we use reinforcement learning as the underlying
model of how agents learn partitions and actions. At the end of the paper we
consider other learning models and show that our results are robust.
To �x ideas think about the di¤erent interactions colleagues face at work

(e.g. in an Economics department). Focus on interactions where each player
has two actions available, say to provide either high or low e¤ort. Some of these
interactions might correspond to coordination games, where it is in each player�s
best interest to match the action of the other. Others might correspond to Anti-
coordination games, where each player�s best response is to choose the action
the opponent does not choose. And still others might correspond to games of
con�ict, where one player wants to match the action of the opponent, but the
other player does not. If agents are involved in many such interactions, it is not
clear whether they will want to distinguish all of them at all times. Doing so
will certainly require a high amount of alertness (or a high reasoning cost). In
fact we show in this paper, that (under some conditions on the frequencies with
which these games occur) agents will not distinguish them, even for arbitrarily
small reasoning costs. Furthermore in this case, the strict Nash equilibria in
the Coordination Games will never be observed. This conclusion is our starting
point to study the implications of learning across games for equilibrium selec-
tion in two-player games. Then, even for arbitrarily small reasoning costs, we
establish the following results.

� Learning across games (if it converges) leads to approximate Nash equi-
librium play in all games.1

� Nash equilibria in weakly dominated strategies that are unstable to learn-
ing in a single game can be stabilized by learning across games.

1We say "approximately" Nash equilibrium because we consider a process of perturbed
reinforcement learning.
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� Strict Nash equilibria that are always stable to learning in a single game
can be destabilized by learning across games.

� Mixed Nash equilibria in 2 � 2 Coordination games that are unstable to
learning in a single game can be stabilized by learning across games.

Furthermore we show that learning across games can explain experimental
results such as those described by Goeree and Holt (2001) in the paper "Ten
Little Treasures of Game Theory and Ten Intuitive Contradictions", but also
deviations from subgame perfection sometimes observed in experiments with
bargaining games. We also characterize equilibrium partitions and �nd that if
and only if the supports of the sets of Nash equilibria of any two games are
disjoint, agents will distinguish these games in equilibrium. Finally we show
that our results are robust to the use of alternative learning models and relate
our results to the concept of analogy based expectations equilibrium introduced
by Jehiel (2005).
The paper is organized as follows. In Section 2 the model is presented. In

Section 3 we characterize equilibrium actions and partitions. In section 4 we
show that learning across games can provide a natural explanation for several
experimental results. Section 5 discusses alternative settings. In Section 6 we
discuss related literature and Section 7 concludes. The proofs are relegated to
an appendix.

2 The Model

2.1 Games, Partitions, Payo¤s

Games and Partitions
There are 2 players indexed i = 1; 2 playing at each point in time t = 1; 2:::

a strategic form game randomly and independently drawn from the set � =
f
1;::::
Jg according to probabilities f = (fj)
j2� where fj > 0;8
j 2 �.2 For
both players i = 1; 2 all games 
 2 � share the same action set Ai. Denote by
P(�) the power set (or set of subsets) of � and P+(�) the set P(�)�?: Players
partition the set of all games into subsets of games they see as analogous. Denote
G a partition of � with card(G) = Z: An element g 2 G is called an analogy class.
Analogy classes are denoted gk 2 P+(�) = fg1; :::; gKg: The set of all possible
partitions of � is given by G = fG1; :::; GLg with card(G) = L: Furthermore
denote actions for player i by aim 2 Ai = fai1; :::; aiM(i)g, where M(i) = cardAi.
Throughout the paper the generic index h will be used whenever we want to
distinguish between any game, action, analogy class or partition and a particular
one.
Payo¤s and Reasoning Costs
Payo¤s �i(at; 
t) for player i at any time t depend on the game that is played


t and the actions chosen by both players at = (a1t; a2t).

2 In the following we will denote both the random variable and its realization by 
:
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In addition there is a cost �(Z; �) of distinguishing games re�ecting the
agents�limited reasoning resources. �(Z; �) is an increasing function of Z, i.e.
partitions of higher cardinality are more costly. More precisely: Zl R Zh ,
�(Zl; �) R �(Zh; �): The parameter � gives an upper bound on reasoning costs,
i.e. 8 Z; � > 0: 0 � �(Z; �) < �:
Note that in reality reasoning costs can also apply to memorizing larger

quantities of information, employing more complex strategies or to learning in a
larger state space etc... We assume (as in standard models) that all these activ-
ities are costless. The only activity that we assume has a cost is distinguishing
di¤erent games. This is done in order to minimize the number of deviations
from standard models.3 Finally we assume that net payo¤s (net of reasoning
costs) are positive and �nite.4

2.2 Learning

The learning model we consider is one of reinforcement based on Roth and Erev
(1995).5 In this kind of models partitions and actions that have led to good out-
comes in the past are more likely to be used in the future. More precisely players
are endowed with propensities �il to use partitions Gl and with attractions �

i
mk

towards using each of their possible actions aim 2 Ai. Unlike in standard rein-
forcement learning where attractions are de�ned for a given game, in learning
across games attractions depend on the analogy class gk 2 P+(�): Players will
choose partitions with probabilities qi proportional to propensities and actions
with probabilities pi proportional to attractions according to the choice rules
speci�ed below. After playing a game players update their propensities and
attractions taking into account the payo¤ obtained.6

At any point in time t a player is thus completely characterized by her at-
tractions and propensities (�it; �it); where �it = (�itl )Gl2G are her propensities
for partitions and �ti = ((�imk)am2Ai

)gk2P+(�) her attractions for actions (de-
pending on the analogy class).
The Dynamic Process
The dynamic process unfolds as follows.
(i) First players choose a partition Gl with probability

qitl =
�itlP

Gh2G �
it
h

: (1)

3 In Section 5.3 we will discuss our assumptions on reasoning costs some more.
4Normalizing payo¤s to be positive is a technical assumption commonly used in reinforce-

ment models. (See among others Börgers and Sarin (1997)). Here of course it implies that
reasoning costs have to be "small" compared to the game payo¤s. This is the most interesting
case, though.

5See also Erev and Roth (1998).
6While reinforcement learning as applied to action choices has been extensively studied in

the literature and has strong empirical support, learning of partitions (or categorizations) is
not very well understood. A priori, though, no su¢ cient reason seems to exist to justify why
agents should learn about partitions in a di¤erent way than they do about actions. Very few
papers on reinforcement learning of categorizations exist in the computer science literature.
See Baum (2004) or Porta (1999) among others.
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Denote Git the partition actually chosen by player i at time t.7

(ii) A game 
tj is drawn from � according to ffjg
j2� and classi�ed into g
it
k

according to Git. The reasoning cost �(Z(t); �) is incurred.
(iii) Players choose action am with probability

pitmk =
�itmkP

ah2Ai
�ithk

: (2)

Let ait be the action actually chosen by player i at time t:
(iv) Players observe the record of play wit = fGit; git; ait; �i(at; 
t)g:
(v) Players update attractions according to the following rule,

�
i(t+1)
mk =

�
�itmk + �

i(at; 
t) + "0 if gik; a
i
m 2 wit

�itmk + "0 otherwise
: (3)

The attraction corresponding to the action and analogy class just used is
reinforced with the payo¤s obtained �i(at; 
t): In addition every attraction is
reinforced by a small �xed amount "0 > 0. In the analogy class just visited "0
is best interpreted as noise or experimentation.8 As "0 has a bigger e¤ect on
smaller �, it increases the probability that "suboptimal" actions are chosen. In
analogy classes not visited, it can be seen as re�ecting forgetting.
(vi) Players update propensities as follows:

�
i(t+1)
l =

�
�itl +

�
�i(at; 
t)� �(Zl; �)

�
+ "1 if Gl 2 wit

�itl + "1 if G =2 wit (4)

where again "1 > 0 is noise. The payo¤s relevant for partition updating are
payo¤s net of costs of holding partitions.9

Action Choice and Phenotypic Play
Note that there is a di¤erence between action choices actually made by the

players and observed or "phenotypic" play in each game.
- Action choice in each analogy class is described by the probabilities pitk =

(pit1k; :::; p
it
Mk). These probabilities are de�ned over the set of analogy classes

P+(�): They characterize a player�s choice.
- Phenotypic play in any game 
j is described by the probabilities �itj =

(�it1j ; :::; �
it
Mj) de�ned over the set of games �: The phenotypic play probability

�itmj captures the overall probability (across partitions) with which action m is

7One might think that agents do not choose a new partition each time they face a new
game, but more infrequenty. As such a change only a¤ects the relative speed of learning it
doesn�t a¤ect our results qualitatively.

8There are many alternative ways to model noise. One could see "0 as the exspected value
of a random variable or allow noise to depend on choice frequencies without changing the
results qualitatively. See Fudenberg and Levine (1998) or Hopkins (2002).

9One might wonder why agents do not update all partitions that contain git: Such "cross-
updating" would be an additional deviation from standard reinforcement learning in a single
game. We want to focus in our analysis though on the isolated e¤ect of the cost of distin-
guishing di¤erent games.
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chosen when the game is 
j : It is generated from choice probabilities as follows:
�itmj :=

P
Gl2G q

it
l

P
gk2Gl

pitmkIjk where Ijk = 1 if 
j 2 gk and zero otherwise.
Flat Learning Curves and Step Size
A characteristic property of this version of reinforcement learning is that

learning curves get �atter over time. Note that the denominators of (1) and
(2) (

P
Gl2G �

it
l =: �

it and
P

am2Ai
�itmk =: �

it
k ) are increasing with time. A

payo¤ thus has a larger e¤ect on action and partition choice probabilities in
early periods. Unexperienced agents will learn faster than agents that have
accumulated a lot of experience. Note also that the impact of noise or experi-
mentation decreases over time. The step sizes of the process are given by 1=�itk
and 1=�it. The property of decreasing step sizes greatly simpli�es the study of
the asymptotic behavior of the process as we will illustrate now.

2.3 Stochastic Approximation and an Evolutionary Inter-
pretation

Denote xit = (pit; qit) the choice probabilities for actions and partitions of player
i where pit = ((pitmk)am2A)gk2P+(�) and qit = (qitl )Gl2G and let x

t = (x1t; x2t) 2
X. The main interest lies in the evolution of xt. X is the space in which these
probabilities evolve.
Stochastic Approximation
Stochastic Approximation is a way of analyzing stochastic processes by ex-

ploring the behavior of associated deterministic systems. A stochastic algorithm
like the one described in (1)-(4) can under certain conditions be approximated
through a system of deterministic di¤erential equations.10 One of the conditions
that make such an approach particularly suitable is the property of decreasing

step sizes (
P1

t=1

�
1
�it

�2
< 1 and

P1
t=1

�
1
�itk

�2
< 1;8gk 2 P+(�); i = 1; 2)

described above. There is one small complication though. While the vectors
xit = (pit; qit) are allowed to take values in Rd the step size is typically taken to
be a scalar in standard models. Note though that here there are 2J+1 di¤erent
step-sizes that are endogenously determined. One possibility is to introduce
additional parameters that take account of the relative speed of learning. We
focus on a simpler way of dealing with this problem that consists in normalizing
the process.11

Normalization Assume that at each point in time t � 1, 8i = 1; 2 after at-
tractions and propensities are updated according to (3) and (4), every
attraction and propensity is multiplied by a factor such that �it = �+ t�

10See the textbooks of Kuschner and Lin (2003) or Benveniste, Metevier and Priouret (1990).
The relevant conditions are listed in Appendix A.
11See Hopkins (2002) or Laslier, Topol and Walliser (2001) for approaches not based on

normalization. Introducing additional parameters has the advantage that the relative speed
of learning can be kept track of explicitly, but also complicates notation a lot. As none of our
results hinges on the speeds of learning we decided for this simpler formulation. See Ianni
(2002), Börgers and Sarin (2000) or Posch (1997) for approaches based on normalization.
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and �itk = �+ t� for some constant � where � = �
0 = �0k (the sum of ini-

tial propensities and attractions) - but leaving xt = (pt; qt) unchanged.12

Then there is a unique step size of order t�1: Call the resulting process
the normalized process.

Now denote by �itmk(x
t) the expected payo¤ of action m conditional on vis-

iting analogy class gk (for player i at time t): And let Sitmk(x
t) be the di¤erence

between the expected payo¤s of action am and all actions on average at xt con-
ditional on visiting analogy class gk: Sitmk(x

t) = �itmk(x
t)�

P
ah2Ai

pithk�
it
hk(x

t):

Analogously de�ne Sitl (x
t) for partition Gl and let ritk be the total frequency

with which analogy class gk is visited at t.
Stochastic Approximation Theory now shows that (under the conditions

mentioned) a discrete time stochastic process can be approximated by its mean
ODE (that we describe in the following Proposition). The behavior of this mean
ODE and the stochastic process are very closely linked, as we will state precisely
right after the statement of Proposition 1.

Proposition 1 The system of mean ODE�s approximating our (normalized)
stochastic learning process is

�
p
i

mk = p
i
mkr

i
kS

i
mk(x) + "0(1�Mpimk);8am 2 Ai; gk 2 P+(�) (5)

and
�
q
i

l = q
i
lS
i
l (x) + "1(1� Lqil);8Gl 2 G; i = 1; 2: (6)

Proof. Appendix B.
The evolution of the choice probabilities xit = (pit; qit) is closely related to

the behavior of the deterministic system (5)-(6). More precisely let us denote
the vector �eld associated with the system (5)-(6) by F (x(t)) and the solution
trajectory of

�
x = F (x(t)) by x(t): Then with probability increasingly close to

1 as t ! 1 the process fxtgt follows a solution trajectory x(t) of the system
F (x(t)). Furthermore if x� is an unstable restpoint or not a restpoint of F (x(t));
then Prflimt!1 x

t = x�g = 0. If x� is an asymptotically stable restpoint of
F (x(t)), then Prflimt!1 x

t = x�g > 0:13 In the following analysis we will thus
focus on the asymptotically stable points of (5)-(6).
An Evolutionary Interpretation
One interpretation of our model is thus that ultimately evolution selects

among partitions and actions. More precisely we have in mind an evolutionary
model with two large populations whose members are randomly matched in
pairs to play a game drawn from the set � according to the frequencies de�ned

12The factor needed is given by (� + t�)=(�i(t�1) + �i(t�1) + L"1) for all �il and (� +

t�)=(�
i(t�1)
k + �i(t�1) +M"0) for all �imk: If one thinks of the process as an urn model, � is

the initial number of balls in each urn.
13See Benaïm and Hirsch (1999), Benaïm and Weibull (2003), Benveniste, Métivier and

Priouret (1987), Kushner and Lin (2003) or Pemantle (1990). For the reader not acquainted
with dynamical systems we de�ne some of the terminology in the appendix.
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above. Each player is genetically programmed to use a certain partition and a
pro�le of actions measurable with respect to this partition. In some abuse of
notation denote the two populations by i = 1; 2. Then we can think of selection
being determined by the set of equations (5)-(6).
The dynamics (5)-(6) is a perturbed version of the well known replicator

dynamics. The replicator dynamics is the canonical model of evolution in Evo-
lutionary Game Theory, but also Biology (see e.g. the textbooks by Weibull
(1995) or Vega-Redondo (2000)). It has been extensively studied in the lit-
erature and how it selects among di¤erent equilibria in a single game is well
understood. The relation between perturbed reinforcement learning and repli-
cator dynamics has been pointed out by Hopkins (2002). (Note also that if
card� = 1, there is obviously only one partition and the above system reduces
to the standard replicator dynamics in a single game, which is described e.g. in
Chapter 5.2 of Weibull (1995)).
Throughout the analysis, we will assume that noise is vanishingly small and

of the same order for both action and partition choices.
Assumption A1: (i) "0 ! 0 and (ii) "1 = �"0 for some constant �:
We explain in detail why we make this Assumption at the beginning of

Appendix C.

3 Results

In this section we will present a set of more general results for the case of
arbitrarily small reasoning costs. The results in this section are of a more
theoretical interests. They show that there is an interesting discontinuity in the
sense that even for arbitrarily small reasoning costs, the selection of learning
across games can be very di¤erent from the selection in the case where there
are no reasoning costs at all. In section 4 we will then proceed to show how
learning across games can provide a natural explanation for several well known
experimental results.

3.1 Action Choices

Our �rst result establishes a close relation between the asymptotically stable
restpoints x� = (p�; q�) of F (x(t)) and the set of Nash equilibria ENash(
) in
any game 
: Denote E("0) the set of asymptotically stable points of the system
and the limit set lim�0!0E("0) =: E

�:

Proposition 2 There exists �(�; f) > 0 s.t. whenever � < �(�; f) any as-
ymptotically stable point x� 2 E� must induce phenotypic behavior that is
approximately Nash in every game 
j 2 �; i.e. lim"0!0 (�

1
j ("0); �

2
j ("0)) 2

ENash(
j);8
j 2 �:

Proof. Appendix C.
Whenever reasoning costs are small enough equilibrium action and partition

choices will be such that approximately a Nash equilibrium is played in each of
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the games. This is the case even if players do not distinguish between games.
Thus - unless reasoning costs are signi�cant - learning across games does not
lead to deviations from this basic prediction of game theory.14

Naturally now the question arises how learning across games selects between
(possibly) many Nash equilibria ? We will see in the following subsections that
learning across games can have more "bite" than one would expect and often
leads to a very strong and clear-cut selection. Furthermore this selection can
work in di¤erent directions than it does with learning in a single game.

3.1.1 Two examples

Let us start out with two intuitive examples. Consider the following set of three
games �1 = f
1; 
2; 
3g:


1 :

�
2; 2 1; 1
1; 1 2; 2

�
; 
2 :

�
1; 1 2; 2
2; 2 1; 1

�
; 
3 :

�
2; 1 1; 2
1; 2 2; 1

�

1 is a game of pure Coordination, 
2 is an (Anti)-Coordination Game and 
3

is a game of Con�ict, in which there is a unique equilibrium in mixed strategies
(where players choose both actions with equal probability). There are 5 possible
partitions and 23 � 1 = 7 possible analogy classes.
For learning in a single game the prediction in a model of perturbed reinforce-

ment learning is that agents coordinate on one of the pure strategy equilibria
in games 
1 and 
2 and play the mixed strategy equilibrium in game 
3:

15

Simultaneous learning of actions and partitions leads to the same prediction
whenever there are no reasoning costs (�(Z; �) = 0;8Z 2 N). For arbitrarily
small costs things change. This is the discontinuity mentioned above. Denote
the probability with which agent i chooses the �rst action in analogy class gk by
pik and denote gc = f
1; 
2; 
3g the analogy class corresponding to the coarsest
partition. The following result can be stated.

Claim 1 Assume fj < 1=2;8j = 1; 2: Then 8� > 0 the unique asymptoti-
cally stable point for �1 involves both players holding the coarsest partition
GC = f
1; 
2; 
3g with asymptotic probability 1 and choosing p�c = 1=2:

Proof. Appendix C.
At the unique stable point, both players hold the coarse partition and play

the mixed Nash equilibrium strategies. The intuition is as follows. Note that
both pure strategies in the Coordination Games are a best response to the unique
equilibrium in the Con�ict Game. A small reasoning cost su¢ ces to induce a
tendency for the players to see all three games as analogous. The equilibrium
with the coarse partition is stable whenever none of the Coordination Games is
too important relative to the other two games. Note though that both games

14Note though that if reasoning costs were high or partitions exogenous many deviations
from Nash equilibrium can be observed. Endogenizing partition choice thus restricts the set
of possible outcomes considerably.
15This is shown in Appendix C.
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together can have probability f1+f2 very close to one. If and only if fj < 1=2 for
j = 1; 2 the incentives of an agent who sees the three games as "one" correspond
to those of a con�ict game. Consequently, playing the mixed equilibrium with
the coarse partition is asymptotically stable under this condition. Note also
that - as the equilibrium in Claim 1 is unique - the presence of the con�ict
game destabilizes the otherwise asymptotically stable strict equilibria in the
Coordination Games.
Not always does this require that agents won�t distinguish the games in

equilibrium. Consider the following example of two games �2 = f
1; 
2g,


1 :

a b c
A 2;2 1; 1 2; 1
B 1; 2 2; 2 5; 7
C 1; 1 7; 5 8;6

; 
2 :

a b c
A 6; 4 4; 6 3; 3
B 4; 6 6; 4 3; 3
C 3; 3 3; 3 2; 2

:

Game 1 has two strict Nash equilibria: (A; a) and (C; c). Both are stable to
learning in a single game. By contrast learning across games singles out (C; c)
as a unique prediction for 
1. More precisely we can state the following claim,

Claim 2 Assume 1 > f1 >
�17+

p
409

6 : Then there exists �(�2) > 0 s.t. 8� 2
(0; �(�2)) the unique as. stable point x� has both players holding the �nest
partition GF = ff
1g; f
2gg and play (C; c) in 
1 and ( 12A�

1
2B ,

1
2a�

1
2b)

in 
2 with asymptotic prob. 1.

Proof. Appendix C.
If the �rst game occurs su¢ ciently often, then it is impossible to induce the

strict Nash equilibrium (A; a) at an asymptotically stable point. The reason is
that A is a best response to the mixed equilibrium ( 12A �

1
2B , 12a �

1
2b) that

will be observed with probability 1 in game 
2 (by Proposition 2). This induces
a tendency not to distinguish between the two games in order to save reasoning
costs, destabilizing the strict Nash equilibrium (A; a).16 It can be shown that
points involving the coarse partition are not stable either. At the unique stable
point agents will thus distinguish the two games. Nevertheless the predictions
from learning across games di¤er from those of learning in a single game in that
(C; c) is the unique prediction in game 
1. In this example learning across games
thus does not only lead to di¤erent, but also stronger predictions than learning
in a single game, predicting that (C; c) will always be observed in game 
1. In
that sense learning across games can lead to both "positive" and "negative" new
results. "Positive", as the model can have more predictive power than learning
in a single game, and "negative", as strict Nash equilibria can be destabilized.
We have seen that some strict Nash equilibria will never be observed as an

outcome of the learning across games process irrespective of which partition
agents will hold in equilibrium. In other cases agents might even end up mixing

16For high reasoning costs (� > �(�2)) the strict Nash equilibrium (A; a) cannot be induced
either whenever f1 < 2

3
.
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between di¤erent partitions at an asymptotically stable point, but unfortunately
convergence is not always guaranteed.

3.1.2 Destabilization of Strict Nash Equilibria

It is a well known result that strict Nash equilibria are asymptotically stable
to any deterministic payo¤ monotone dynamics for a single game.17 Learning
across games can sometimes destabilize strict Nash equilibria as we have seen
in the previous examples. This point is made more precise and general in the
following proposition.

Proposition 3 Let b�1 = (b�11; b�21) be a strict Nash equilibrium in 
1 2 � . Then
8� > 0,

(i) If card� = 1 (learning in a single game), then there exists x� 2 E� that
phenotypically induces b�1:

(ii) If card� > 1 this need not be true. Speci�cally let card� = 2 and let 
2
have a unique equ. in mixed strategies stable to learning in a single game
with b�1 in its support. Then there exists f(�) < 1 and f(�) > 0 s.t. if
f1=f2 2 ( f(�); f(�)) the strict equ. b�1 is not phenotypically induced at
any asymptotically stable point x� 2 E�:

Proof. Appendix B.
The �rst part of this proposition shows that strict Nash equilibria are always

stable to the perturbed reinforcement dynamics, if learning occurs in a single
game. This is a standard result. If there are no reasoning costs (�(Z; �) =
0;8Z 2 N) any strict Nash equilibrium can be induced at an asymptotically
stable point even if there are many games. This is non surprising given that
in this case the �nest partition has the same reasoning cost, namely zero, as
any other partition. These predictions change though once we have more than
one game and allow for positive (even though arbitrarily small) reasoning costs.
Speci�cally if the strict Nash equilibrium from some game is in the support of the
unique stable mixed equilibrium in a di¤erent game, the strict equilibrium will
be destabilized. The reason is that a) the mixed equilibrium will be observed in
the second game at any asymptotically stable point as we know from Proposition
2 and b) the strict Nash equilibrium strategies are best responses to the mixed
equilibrium. For arbitrarily small reasoning costs (provided that they are more
important than noise) there will be a tendency for agents to see the games as
analogous and to save reasoning costs.
As we have seen in the previous section (3.1.1), this can have "negative" or

"positive" implications in terms of selection. On the one hand the predictive
power in a particular game can be increased, on the other hand a fundamental
result in learning in a single game (namely the stability of strict Nash equilibria)
is shown not to hold.
17See for example proposition 5.11 in Weibull (1995).
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3.1.3 Mixed Strategy Nash Equilibria in Coordination Games

Similarly we have seen that mixed equilibria in 2 � 2 Coordination or (Anti)-
Coordination games - that are unstable to learning in a single game - can be
stabilized by learning across games.

Proposition 4 Let b�1 = (b�11; b�21) be a mixed strategy Nash equilibrium in 
1 2
�. If 
1 belongs to the class of 2� 2 coordination games, then 8� > 0;

(i) If card� = 1 (learning in a single game), then b�1 is not phenotypically
induced at any asymptotically stable point x� 2 E�:

(ii) If card� > 1 this need not be true. Speci�cally let card� = 2 and let 
2
have an equilibrium b�2 = b�1 stable to learning in a single game. Then
whenever f1=f2 > bf(�); there exists x� 2 E� which induces b�1 in game

1:

Proof. Appendix B.
There has been a lot of research e¤ort to investigate the stability properties

of mixed equilibria. A very robust result from this literature is the instability
of mixed equilibria in 2� 2 pure Coordination and Anti-Coordination games in
multipopulation models for very broad classes of dynamics.18 Learning across
games though can stabilize mixed equilibria in these games. Given the inherent
instability of these equilibria for learning in a single game, it seems a reasonable
conjecture that learning across games can stabilize mixed equilibria also in a far
larger class of situations.

3.1.4 Stabilization of Nash equilibria in weakly dominated strategies

Finally we will show that Nash equilibria in weakly dominated strategis can be
stabilized by learning across games. These equilibria are unstable to perturbed
reinforcement learning in a single game. In fact whenever card� = 1, i.e. when-
ever there is only one game, learning across games also predicts the instability of
such equilibria. Whenever there is more than one game though learning across
games can stabilize such equilibria. A case in which this is always true is when-
ever there are two games and the equilibrium in question is strict in the second
game.

Proposition 5 Let b�1 = (b�11; b�21) be a pure strategy Nash equilibrium in weakly
dominated strategies in game 
1 2 �: Then 8� > 0;

(i) If card� = 1 (learning in a single game), then b�1 is not phenotypically
induced at any asymptotically stable point x� 2 E�:

18For learning in a single game results on the stability of mixed equilibria in multipopulation
games are typically negative. Posch (1997) has analyzed stability properties of mixed equilibria
in 2 � 2 games for unperturbed reinforcement learning. See also the textbooks by Weibull
(1995), Vega-Redondo (2000) and Fudenberg and Levine (1998) or Hofbauer and Hopkins
(2005) for recent research on this topic.
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(ii) If card� > 1 this need not be true. Speci�cally if card� = 2 and b�2 = b�1
is a strict Nash equilibrium in game 
2 6= 
1; then there exists x

� 2 E�
which induces b�1 in game 
1:

Proof. Appendix C.
Interesting implications of Proposition 5 concern extensive form games. Gener-

ically in �nite extensive form games with perfect information any equilibrium in
weakly dominated strategies of the associated strategic form fails to be subgame
perfect in the extensive form.19 We will see how this proposition plays out in
Section 4.3 in an application to bargaining games. In fact the bargaining appli-
cation also shows that the condition that b�1 be a strict equilibrium in the second
game, while being su¢ cient, is not necessary to stabilize such an equilibrium.

3.2 Partitions

As we have noted before our perspective on partition learning is a very instru-
mental one. Rather than asking which games do agents a priori perceive as
analogous (according to some exogenous similarity measure), we are interested
in the question which games will agents learn to discriminate ? Consider for
example the following three games occurring with the same frequency,


1 :

�
3; 5 3; 4
1; 4 4; 3

�
; 
2 :

�
3; 3 3; 4
1; 3 4; 5

�
; 
3 :

�
1; 15 0; 17
1
4 ;

1
7

1
2 ;

1
5

�
:

It is not clear what kind of a priori similarity criterion one should apply to
the set of games � = f
1; 
2; 
3g. Games 
1 and 
2 are relatively closer in payo¤
space, but all three games are strategically di¤erent.20 Now as an outcome of
learning across games both players could either hold partition f
1; f
2; 
3gg or
f
2; f
1; 
3gg, but 
1 and 
2 will always be distinguished in equilibrium. The
reason is that the supports of the sets of Nash equilibria in games 
1 and 
2 are
disjoint.
In general whether any two games will be seen as analogous as an outcome

of the learning process will depend on the degree of "overlap" between the Nash
equilibria of the di¤erent games contained in �: Denote SNash(
j) the support
of the set of Nash equilibria ENash(
j) of a game 
j : Formally S

Nash(
j) =

faimj9�ij 2 ENash(
j) with �imj > 0g: The following proposition shows that if
and only if the supports of the sets of Nash equilibria of the games in � are
disjoint the �nest partition will always emerge (unless reasoning costs are high).

Proposition 6 There exists �(�) > 0 s.t. whenever � < �(�) the �nest par-
tition GF will be chosen with asymptotic probability qi�F = 1;8i = 1; 2
at all asymptotically stable points if and only if SNash(
j) \ SNash(
h)

19See chapter 6 in Osborne and Rubinstein (1994). Note that the quali�er generic here
refers to the extensive form.
20Rubinstein (1988) uses distance in payo¤ (or probability) space as a similarity criterium

in one-person decision problems. Steiner and Stewart (2008) use such a criterium for games.
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= ?; 8
j 6= 
h 2 �: Furthermore in this case the conclusions of part (i)
of Propositions 3, 4 and 5 hold true in each of the games.

Proof. Appendix C.
The intuition is very simple. If the supports of the sets of Nash equilibria

of two games are disjoint then seeing them as analogous necessarily involves
choosing an action that is not a best response to the opponent�s phenotypic
play for one of the players in one of the games. This player will gain from
distinguishing these games. The following remark establishes an upper bound
on the cardinality of the partitions agents will use in equilibrium.

Remark 8� > 0; i = 1; 2 any partition Gl 2 supp qi� has to satisfy cardGl �
cardAi:

Any partition of higher cardinality will either contain two di¤erent analogy
classes in which the same pure action is chosen. Or - if a mixed action is chosen
in some analogy class gk - there will exist another analogy class gh 6= gk in which
a best response to the phenotypic play of the opponent is chosen 8
j 2 gk. As
merging these analogy classes will save reasoning costs, such a restpoint can
never be stable.

4 Learning Across Games and Experiments

In this section we will not always assume that reasoning costs are arbitrarily
small, but we will maintain the assumption that they are "small" in the sense
that � <

��minA1�A2�� �
i(a; 
)

��, i.e. that they are always smaller than the
smallest possible payo¤ in any of the games. Then we will show how learning
across games can provide an intuitive explanation for many typical experimental
results.
The experimental results we consider are largely taken from a paper by

Goeree and Holt (2001), entitled "Ten Little Treasures of Game Theory and Ten
Intuitive Contradictions". In this paper they report results on ten experimental
games. Each game comes in two or three slightly di¤erent versions (with slight
changes in payo¤s) that yield dramatically di¤erent behavior in the laboratory.
We try to argue in this section that these di¤erent results have a very natural
explanation in terms of learning across games.
All the games in their experiments are played only once in the laboratory

and di¤erent games are played by di¤erent participants. There are thus no
opportunities for learning across games in the laboratory. This is true of almost
all laboratory experiments. What we argue is that experimental subjects when
they come to the lab and face an arti�cial situation they draw analogies to
situations they have faced outside the lab. Goeree and Holt (2001) themselves
remark in the conclusions: "The decision makers[...], like the subjects in our
experiments, typically have experience in similar games with other people". We
will thus posit that a process of learning across games takes place outside the
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laboratory and that subjects inside lab play according to the analogy class that
is triggered by the game they face in the lab.
In the next subsections we will describe two of Goeree and Holts�(2001) puz-

zles (namely the Traveler�s Dilemma and a type of Coordination games called
"Kreps games"), that we think have a very intuitive explanation in terms of
learning across games. We will then show that learning across games can also
explain deviations from subgame perfection often observed in experimental bar-
gaining games. In the Appendix we give an informal account of how other
results in Goeree and Holt (2001) might be explained through learning across
games.

4.1 The Traveler�s Dilemma

The story in the Traveler�s dilemma goes as follows. Two travelers have pur-
chased identical antiques while on a tropical vacation. Their luggage is lost
on the return trip and the airline asks them to make independent claims for
compensation. The airline representative announces: "We know that the bags
have identical contents, and we will entertain any claim between 180$ and 300$,
but you will be reimbursed only the minimum of your two claims. In addi-
tion - if your claims di¤er - an amount of R will be transferred from the one
making the higher claim to the one making the lower claim". The action set
is A = [180; 300] \ N. Now if R = 0 the traveler�s have nothing to lose by
making the highest claim (300$), which is in fact a weakly dominant strategy.
(All points where players claim the same are Nash equilibria). As soon as R > 1
on the other hand claiming 180$ is the unique Nash equilibrium and the unique
rationalizable strategy.
Goeree and Holt (2001) play two games in the lab. One where R = 5 and

one where R = 180. They �nd that in the treatment where R = 5 a large
majority of subjects choose ai = 300; whereas in the treatment where R = 180
most subjects choose ai = 180.21

Remark: When we try to explain the experimental �ndings we think it is
more insightful to explain the predominant pattern found in the data,
rather than predicting the exact distribution of choices. This could be
done by playing with the noise parameter " in the model, but could just
as well be due to things not modeled. Some subjects might fail to map
the experimental game into the "correct" analogy class or there might be
di¤erences in reasoning costs across subjects etc..

To explain these results we assume that outside the lab participants regularly
face games with this payo¤ structure

�i(a;R) = v +minfai; ajg �R � (�1)�(ai<aj)

21More precisely in the treatment R = 5 (180) around 80% choose 300 (180) and around
5% choose 180 (300), 190 (270), 250 (240) and 280 (190). Only a graph with the distribution
of choices is available in Goeree and Holt (2001).
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where �(ai < aj) = 1 if ai < aj and zero otherwise. The number v � 2 is to
ensure that payo¤s are always positive and can be interpreted as the "show up
fee" (in their experiment 6$) that participants were paid just for arriving at
the lab. The action set is A = [180; 300] \ N and the set of games is de�ned
by the di¤erent values R is allowed to take. For simplicity we assume that
R 2 f0; 5; 180g: It seems intuitive to us that many (if not a large majority) of
games played in real life have the more simple structure where R = 0: If we
de�ne the set of games as �TD = f
0; 
5; 
180g we have 5 possible partitions.
Denote by f0; f5 and f180 the frequencies with which these three games occur
respectively. For clarity of exposition, assume that reasoning costs have the
following simple structure: �(Z; �) = e� � (Z � 1) for some e� > 0. We can then
state the following claim.

Claim 3 If f5 < e�=4 < f0=4 there is an asymptotically stable point where both
players hold partition G� = ff
180g; f
0; 
5gg and choose 180 in analogy
class f
180g and 300 in analogy class f
0; 
5g with asy. prob. one.

Proof. Appendix C.
Claim 3 implies a deviation from Nash equilibrium in the game with R = 5

in spite of the fact that reasoning costs need not be "large" compared to the
payo¤s of the game. They cannot be arbitrarily small though, as it was the
case in Section 3, in order to have the above result. Note also that it is not the
case that learning across games can explain "everything". The reverse result
for example (where everyone chooses a = 300 in the game with R = 180 and
a = 180 in the game with R = 5) could not be explained by learning across
games, no matter how high the reasoning costs, how rarely the games occur or
what other games are played.

4.2 Kreps Games

With this example (also taken from Goeree and Holt (2001)) we want to illus-
trate how learning across games can select between the con�icting motives of
risk-dominance and payo¤ dominance in Coordination games . Another reason
why we �nd the example of some independent interest is that it illustrates that
players in di¤erent player roles need not end up with the same partitions at a
stable point. The results we consider are from a set of games that Goeree and
Holt (2001) call "Kreps games", which have the following payo¤ matrix.

Left Middle NonNash Right
Top 500; 350 300; 345 310; 330 320; 50
Bottom 300; 50 310; 200 330; 330 x; y

:

Clearly ("Top", "Left") is always a Nash equilibrium in this game. ("Bot-
tom","Right") is a Nash equilibrium whenever (x; y) � (320; 330) and ("Bot-
tom", "Non-Nash") is a Nash equilibrium whenever y � 330.
Goeree and Holt (2001) report that if (x; y) = (350; 340) a large majority of

row players choose "Top" while roughly 2/3 of column players tend to choose
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"Non-Nash" and 1/3 Left. If (x; y) = (650; 700), though, almost all row players
choose "Bottom" and almost all column players choose "Right".22 How can we
explain this result ? Clearly it seems to have something to do with the classical
trade o¤ between payo¤s and risk. In particular most column players seem to
choose the risk-free action "Non-Nash" in the �rst case, but not in the second.
(For row players no strong trade-o¤ exists between the two). To predict the
behavior of the participants in this way though one has to make assumptions on
their priors, degree of risk-aversion etc.. We want to illustrate now how learning
across games how these motives emerge naturally from a process of learning
across games.
Consider sets of games in which x 2 [300; 650] \ N and y 2 [50; 700] \ N

(the maximum and minimum payo¤ in the matrix above). From this set we will
consider three games for simplicity; the two games from the experiment and
one game where ("Bottom","Non-Nash") is a Nash equilibrium. In particular
we assume that in 
1 : (x1; y1) = (350; 340) in 
2 : (x2; y2) = (420; 320) and in

3 : (x3; y3) = (650; 700), but any other choice for 
2 s.t. y2 � 320 would do as
well. We assume again that reasoning costs have the following simple structure:
�(Z; �) = e� � (Z � 1); where e� > 0: We also assume that f2 � 1

15f1 and that
there is some heterogeneity among players in reasoning costs.

Claim 4 If e� < 35f1there is an asymptotically stable point at which row players
hold partition G = ff
1g; f
2; 
3gg and choose "Top" in 
1 and "Bottom"
in f
2; 
3g. Column players hold partition GF = ff
1g; f
2g; f
3gg ife� < 20f1 and G

0
= ff
1; 
2g; f
3gg if e� 2 [20f1; 35f1). They choose

"Left" in f
1g, "Non-Nash" in f
2g and f
1; 
2g and "Right" in f
3g.

Proof. Appendix C.
Of course the more heterogeneous behavior we want to explain the more

heterogeneity we need in reasoning costs.23 Note, though, that for all players
reasoning costs can be very small compared to the payo¤s of the game. Note
also that learning across games could again not explain "everything" here. In
particular it cannot explain the reverse choices, where players choose ("Bot-
tom","Right") in 
1 and Top and Non-Nash/Left in 
3, unless one makes very
contrived assumptions about the frequencies of the games. (In particular the
ratio f2

f3
would need to be contained in the interval [0:58; 0:71] in the most fa-

vorable case. As y3 rises the size of this interval shrinks and for large enough
y3 this result could not be explained anymore.)
What explanation do Goeree and Holt (2001) o¤er for their results ? They

argue that level k rationality theory by Stahl and Wilson (1995) can explain the

22More precisely if (x; y) = (350; 340) 84% of row players choose "Top", 24% of column
players "Left", 12% "Middle" and 64% "Non-Nash". If (x; y) = (650; 700); 96% of row players
choose "Bottom" and 84% of column players "Right", while 16% choose "Non-Nash". Note
that we use the version with the "positive" payo¤ frame. The distribution of action choices
is not substantially di¤erent, though, in the negative frame.
23 It would also be possible to explain the results in terms of a mixed equilibrium where

players are indi¤erent between coarser and �ner partitions for a �xed reasoning cost - but this
requires very precise assumptions on the parameters which we think are hard to justify.
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data in conjunction with the logit choice rule with errors whenever a) higher
levels of reasoning and b) a "higher complexity" of the game imply higher er-
rors. (What "high complexity" means remains unde�ned in their paper). They
also show that popular theories such as "inequity aversion theory" or "maxmin
heuristics" cannot explain the data. We �nd it very natural to think that these
results arise because the games trigger di¤erent analogy classes with the inex-
perienced players in the laboratory. We have seen that the model of learning
across games can explain the data under weak and natural assumptions on the
model parameters.

4.3 Bargaining

Finally we will also show how learning across games could explain deviations
from subgame perfection often observed in experimental bargaining games. We
do not use the bargaining games from Goeree and Holt (2001), as they only
provide information on average behavior of the �rst proposers in their paper.
Instead we consider a little more general set up, which is maybe also of inde-
pendent interest to the reader. In the bargaining game two individuals, 1 and
2; have to decide how to divide a pie of size 1. Assume that player 1 proposes
�rst a certain division of the pie (a; 1� a) where a denotes the share of the pie
she wants to keep for herself. Player 2 can either accept or reject the o¤er and
make a counter-o¤er. Then it is player 1�s turn again and so on. For simplicity
we restrict the strategy space and focus on stationary strategies, i.e. strate-
gies that do not depend on the decision node. A strategy of a player i is then
characterized by two numbers (ai; bi) where ai is the proposal (the share of pie
she wants to keep) and bi the acceptance threshold. Let ai and bi be from the
�nite grid A = f0; 1M ;

2
M ; ::

M�1
M ; 1g, where M is some large but �nite number.

Finally for any number a denote by bac 1
M
the largest integer multiple of 1

M that
is smaller than a.
Assume that the players face two Rubinstein games that di¤er in the discount

factor �j : At each point in time one game is randomly drawn and classi�ed by the
agents into an analogy class according to the partition they hold. Then players
choose an action according to their action choice probabilities and receive the
(discounted) payo¤s.24 Finally attractions and partitions are updated.
In particular let us consider the case where game 
1 has discount factor

�1 > 0; and game 
2 has discount factor �2 = 0: Game 
2 is essentially an
Ultimatum Game, where the whole pie is gone if the �rst o¤er is not accepted.
Both games have many Nash equilibria. As the action grid gets �ne enough
(M ! 1), all SPNE of the games tend to ai = 1

1+�j
and bi = �j

1+�j
.25 There

are two possible partitions. A coarse partition in which players see the two
games as analogous and a �ne partition in which the games are distinguished.

24Learning is thus based on the strategic forms in this example. For a model of learning
in extensive form games see Laslier and Walliser (2005). They show that in generic perfect
information extensive form games reinforcement learning within the game will lead to the
subgame perfect Nash equilibrium. See also Jehiel and Samet (2005).
25See Propositions 3 and 4 in van Damme, Selten and Winter (1990).
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Denote the three analogy classes gk with k 2 fR;U;Cg; corresponding to the
Rubinstein game (
1), the Ultimatum game (
2) and the coarse partition.

Claim 5 8� > 0 there exists an asymptotically stable point for �3 = f
1; 
2g
involving both players holding the coarse partition G = f
1; 
2g; player 1
demanding a1� =

j
1

1+�1f1

k
1
M

and player 2 accepting all o¤ers of at least

b2� = 1�
j

1
1+�1f1

k
1
M

with asymptotic probability 1: If �(2) � f1[1+�1(1�f1)]
1+�1

this is the unique stable point.

Proof. Appendix B.
In this equilibrium players deviate from subgame perfection in both games.

The equilibrium played is close to the SPNE in the Rubinstein game whenever
this game is played with high probability and it is close to the SPNE of the
Ultimatum Game whenever the latter is played very often. As the payo¤s at
stake are the same in both games agents will tend to play the more frequent game
correctly (in the sense that equilibrium actions are closer to subgame perfection).
The intuition for the result is as follows. The equilibrium in which both games
are seen as analogous induces approximate Nash play in both games and thus
asymptotically there are no strict incentives to deviate from this equilibrium.
Any arbitrarily small reasoning cost su¢ ces to stabilize the equilibrium with
the coarse partition provided that it is more important than noise. There are
many experiments that show that subjects often do not behave in accordance
with subgame perfection.26 If one thinks that the inclinations of experimental
subjects to choose certain actions in the experiment have been shaped by a
long process of reinforcement learning outside the laboratory, learning across
games can provide an explanation for why deviations from subgame perfection
are sometimes observed in these games.

5 Extensions and Discussion

There are some features of our model that we would like to discuss somewhat
more. The �rst point we would like to make is that the predictions for action
choices that arise with learning across games are robust and continue to hold if
other (and a priori quite di¤erent) learning models are considered. Secondly we
contrast our results to previous results obtained by Jehiel (2005). And thirdly
we would like to shortly discuss our assumptions on reasoning costs.

5.1 Other Learning Models

The other model (apart from reinforcement learning) that has received a lot
of attention in the literature is the model of stochastic �ctitious play.27 In

26See Binmore et al. (2002) and the references contained therein.
27See for example Fudenberg and Levine (1998). Hopkins (2002) compares the long run

behavior of reinforcement learning and stochastic �ctitious play.
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stochastic �ctitious play a group of players repeatedly play a normal form game.
During each time period each player plays a best response to the time average of
her opponent�s play, but only after her payo¤s have been randomly perturbed.
In applying stochastic �ctitious play to our context of simultaneous learning of
actions and partitions two cases arise depending on whether or not players are
able to correlate their action and partition choices. Before describing the choice
rules in each of these cases let us introduce some notation. Denote

zitm(g
�i
k ) =

Pt�1
�=1 �

i
m(�)�

�i
k (�)Pt�1

�=1 �
�i
k (�)

(7)

the frequency vector that describes the historical frequency of player i choosing
action am whenever player �i visits analogy class gk: �im(�) takes the value 1 if
player i chooses am at time � and 0 otherwise. zit(g

�i
k ) = (z

it
1 (g

�i
k ); :::z

it
Mi
(g�ik ))

is the belief of player �i about player i�s action choice in the games contained
in gk: In the same spirit denote

�
it

l ((x� )
t�1
�=1 ; Zl) =

Pt�1
�=1

�
�i(a� ; 
� )� �(Zl)

�
�il(�)Pt�1

�=1 �
i
l(�)

(8)

the historical (net) payo¤ obtained on average when visiting partition Gl:
Let us start with the case that seems closest to reinforcement learning, where

agents do not have the possibility to correlate their action and partition choices.
According to �ctitious play the player �rst picks the partition with the highest
expected payo¤ which (as players do not correlate action and partition choice)
is equivalent to simply choosing qit� to maximize qit�l(�) where �l(�) describes
player i�s historical payo¤ given i0s and �i�s action choices. The choice rule for
partitions is

qit� 2 argmax
X
Gh2G

qth�h(�) + "1'(qt) (9)

where '(q) is a deterministic perturbation.28 Some restrictions on the shape
of this function are given in Appendix D. As the player�s payo¤s do not directly
depend on their opponent�s partition choice (only indirectly through the induced
actions) and as they do not correlate action and partition choice the latter is
entirely non-strategic. Given their partition choice agents then choose their
actions for a given analogy class as follows,

pit�k 2 argmax pitk

24 X

j2gik

fj�(
j)

35 z�it(gik) + "0'(ptk): (10)

where �(
j) is the payo¤-matrix of game 
j : Agents use the average payo¤ma-

28Hofbauer and Sandholm (2002) have shown that for any stochastic perturbation used in
(9) there is always an alternative representation using a deterministic noise function.
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trix across all the games contained in analogy class gk as relevant information.29

If agents are able to correlate partition and action choice we have the fol-
lowing choice rule,

(qit�; pit�k ) 2 argmax
X
Gh2G

qit

24 X
gk2Gl

pitk

24 X

j2gik

fj�(
j)

35 z�it(gik)
35 Ijk+"'(pt; qt);

(11)
where Ijk takes the value 1 if 
j 2 gk and zero otherwise. Given that partition
choice is not directly payo¤ relevant (only through the action choices it induces),
it is not surprising that correlating both choices does not fundamentally change
the results. In both cases (correlation and non-correlation) stochastic �ctitious
play gives rise to di¤erential equations that coincide with those associated with
the reinforcement learning process up to a multiplicative constant and a di¤er-
ence in the noise term. We can state the following proposition.30

Proposition 7 Under stochastic �ctitious play with choice rules (9) - (10) or
(11) Propositions 2-6 as well as Claims 1-5 continue to hold.

Proof. Appendix D.
Next we want to show that - while the results are robust to changes in the

underlying learning model - the notion of analogy employed can be crucial.

5.2 Stochastic Fictitious Play with Analogy Based Expec-
tations

Jehiel (2005) has proposed a (static) model where seeing two games as analogous
only means having the same expectations about the opponent�s behavior. This
implies that action choice can still be di¤erent even in games that are seen as
analogous. In his model players always know which game they are playing, but
they do not distinguish between the play of the opponents in the di¤erent games.
In the current paper on the other hand, players may not distinguish between
games. In this section we use Jehiel�s (2005) concept of analogy thinking and
add an endogenous partition choice relying on stochastic �ctitious play.
Then in the case of no correlation choice rule (10) is replaced by,

pit�j (gk) 2 argmax pitj (gk)�(
j)z�it(gik) + "0'(pjk): (12)

Note that the choice variable here is pitj (gk) instead of p
it
k in equation (10). With

analogy based expectations action choice is conditioned on both the game and
the analogy class the game is contained in. Agents choose a best response to
their beliefs z�it(gik) (that depend on the analogy class) in each game separately.

29 In the terminology of Germano (2007) the matrix across games
P

j2gik

fj�(
j) would

be the "average game".
30 It is not new to the literature that stochastic �ctitious play and reinforcement learning

can lead to similar ODE�s in the stochastic approximation. See Benaim and Hirsch (1999) or
Hopkins (2002) among others.
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If agents are able to correlate partition and action choice the choice rule is
as follows,

(qit�; pit�j (gk)) 2 argmax
X
Gh2G

qit
X
gk2Gl

X

j2�

fj
�
pitj (gk)�(
j)z

�it(gik)
�
+"'(pt; qt):

(13)
These processes are quite di¤erent from what we have considered until now,
as a di¤erent notion of analogy is used. And of course the ODE�s associated
with either of them will not coincide with (5) - (6). What we are interested
in is whether the phenotypic play of the agents will be such that the results
derived above continue to hold. The next proposition shows that - maybe not
surprisingly - the predictions of such a model do not always coincide with the
predictions of our model.

Proposition 8 Under stochastic �ctitious play with choice rules (9) - (12) or
(13) Proposition 2 continues to hold. On the other hand part (ii) of Propo-
sitions 3-5 will not hold in general.

Proof. Appendix D.
Proposition 8 shows that - while the results are robust to changes in the

underlying learning model - the notion of analogy employed can be crucial.
With Jehiel�s (2005) notion of analogy Propositions 3-5 continue to hold only
if additional restrictions are met. The proposition also illustrates the discipline
that endogenizing partition choice imposes on the process. The deviations from
Nash equilibrium that Jehiel (2005) observes do not occur when partition choice
is endogenous (and reasoning costs small). To illustrate this point consider the
following example taken from Jehiel (2005).

Example I

Consider the following games occurring with the same frequency,


1 :
L LM RM R

H 5; 2 0; 2 2; 4 0; 0
L 4; 3 3; 0 1; 0 2; 0

; 
2 :
L LM RM R

H 3; 0 4; 2 2; 0 1; 1
L 0; 2 5; 2 0; 0 2; 4

:

The unique Nash equilibrium is (H;RM) in 
1 and (L;R) in 
2: Jehiel
(2005) shows that the following is an analogy-based expectations equilib-
rium. Player 1 sees both games as analogous and plays L in game 
1 and
H in 
2 best responding to beliefs z

1(f
1; 
2g) = ( 12 ;
1
2 ; 0; 0): Player 2 dis-

tinguishes the games and plays L in 
1 and LM in 
2 best responding to
beliefs z2(f
1g) = (0; 1) and z2(f
2g) = (1; 0): This action pro�le is not
a Nash equilibrium in either game. Endogenizing partition choice with
the stochastic �ctitious play process though shows that such a point can-
not be stable (for small reasoning costs). Consider the partition choice of
player 1. In the o¤-equilibrium analogy classes f
1g and f
2g beliefs will
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eventually converge to z1(f
1g) = (1; 0; 0; 0) and z1(f
2g) = (0; 1; 0; 0):
Whenever player 1 holds the �ne partition she will choose H in 
1 and L in

2 giving her a payo¤ of 5 in both games (as opposed to 4 with the coarse
partition). Thus the historical (net) payo¤ obtained when visiting the �ne
partition GF will converge to 5: Under either choice rule (9) - (12) or (13)
player 1 will eventually start to use the �ne partition, destabilizing such a
restpoint. Note though that if player 1 were forward-looking (anticipating
the �nal outcome) she might prefer using the coarse partition.

5.3 Reasoning Costs

Until now we have only considered the case of no or very small reasoning costs.
Anything else would have been an arbitrary choice. Also, one might argue that
it is always optimal (in the sense of evolutionary selection) for an agent to have
small reasoning costs. If this were the case one could argue that reasoning costs
have evolved to be small. The following simple example shows that having
smaller reasoning costs need not always lead to better outcomes for a player.

Example II

Consider two games 
1 and 
2 with the following payo¤ matrices.


1 :

0@1; 1 4; 3 3; 1
1; 3 5; 1 1; 2
2; 4 2; 1 1; 1

1A ; 
2 :
0@2; 1 3; 2 3; 3
1; 1 2; 4 2; 2
2; 1 1; 2 1; 3

1A
Assume both games occur with equal probability (f1 = f2 = 1=2): If reasoning

costs are small both agents will use the �ne partition in the unique asymp-
totically stable point and play the unique strict Nash equilibrium in each
of the games. This leads to an outcome of (2; 4) in game 
1 and (3; 3) in
game 
2: What would happen if player 1 had very high reasoning costs ?
For high enough reasoning costs she would see both games as analogous.
It can be checked that the unique equilibrium in this case leads to an
outcome of (4; 3) in game 
1 and (3; 3) in 
2: Player 1 is thus better o¤
(both in terms of absolute and relative payo¤s) if she has high reasoning
costs.

This example shows that it is a priori not obvious in which direction evolu-
tionary pressures will work on reasoning costs. To study this issue should be the
object of further research.31 Another question is whether much would change if
one allows for alternative reasoning cost functions. The number of possibilities
here is large.

31There is some literature related to this issue. See for example Robson (2001) and the
references contained therein.
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Alternative Reasoning Cost-Functions
A natural alternative would be to assume that only �ner partitions are

more costly. A disadvantage of this assumption is that it does not deliver a
complete ordering. On the other hand if there are only two games (like in many
of our examples) the two notions coincide, as in this case partitions of higher
cardinality are also �ner. The essence of our results would thus be una¤ected
by such a change, while the exact statement of the propositions would certainly
be di¤erent.
A di¤erent possibility could be that games have observable characteristics

and that it is less costly to distinguish two games if they are "closer "in terms of
this characteristic. While this does not seem unnatural, the problem is of course
to choose these characteristics appropriately. One could think of the di¤erent
situations or games coming with di¤erent "labels" and reasoning costs being
determined how close the games are in terms of these labels. The problem with
this assumption is that the choice of labels is ad hoc while any result one might
hope to get will depend on how one chooses these labels.
One possibility would be to choose as a label some part of the description

of the game, like e.g. payo¤s. Costs would then be increasing in the distance
in payo¤ space between two games (see also Section 4).32 While this seems
like a reasonable criterion in decision problems, it is much more problematic
in games. (See section 3.2). Grimm and Mengel (2008) �nd in an experiment
where participants play multiple games for 100 rounds that distance in payo¤
space cannot explain any of the observed behavior (according to di¤erent metrics
considered). Another possibility would be to consider situations where games
have many di¤erent labels and agents have to choose to which of these to pay
attention. Binmore and Samuelson (2002) have investigated a related question.
Such analysis, though, would be beyond the scope of the present paper.

6 Related Literature

The idea that similarities or analogies play an important role for economic de-
cision making has long been present in the literature.33 Most approaches have
been axiomatic. Rubinstein (1988) gives an explanation of the Allais-paradox
based on agents using similarity criteria in their decisions. Also Gilboa and
Schmeidler (1995) argue that agents reason by drawing analogies to similar sit-
uations in the past. They derive representation theorems for an axiomatization
of such a decision rule. Jehiel (2005) proposes a concept of analogy-based rea-
soning. Seeing two games as analogous in his approach means having the same
expectations about the opponent�s behavior. Still agents act as expected utility
maximizers in each game and can choose di¤erently in games that are seen as

32This would entail an additional assumption of choosing the appropriate metric to measure
this distance. (Candidates might be the Hausdor¤ distance between the convex hulls of payo¤s
or the distance between the matrix norms).
33See Luce (1955) for early research on similarity in economics and Quine (1969) for a

philosophical view on similarity.
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analogous. All these approaches are static and partitions or similarity measures
are exogenous.
LiCalzi (1995) studies a �ctitious play like learning process in which agents

decide on the basis of past experience in similar games. He is able to demonstrate
almost sure convergence of such an algorithm in 2� 2 games. Again similarity
is exogenous in his model. Steiner and Stewart (2008) study similarity learning
in global games using the similarity concept from case-based decision theory.
Samuelson (2001) proposes an approach based on automaton theory in which

agents group together bargaining games to reduce the number of (costly) states
of automata. He �nds that if agents - unlike in our paper - play in both player
roles ultimatum games can be grouped together with bargaining games into a
single state in order to save on complexity costs of automata with more states.
The logic behind his result is quite di¤erent though from the logic behind Claim
5 in our paper. While in his paper the existence of a tournament ensures high
marginal costs for using additional states on the bargaining games, here the
result holds also for vanishingly small marginal reasoning costs provided they
are more important then noise.34

There is obviously also a relation to the literature on reinforcement learning.
Conceptually related are especially Roth and Erev (1995) and Erev and Roth
(1998) from which the basic reinforcement model is taken. Hopkins (2002)
analyzes their basic model using stochastic approximation techniques. Also
related are Ianni (2000), Börgers and Sarin (1997 and 2000) and Laslier, Topol
and Walliser (2001) who rely on stochastic approximation techniques to analyze
reinforcement models.

7 Conclusions

In this paper we have presented and analyzed a learning model in which deci-
sionmakers learn simultaneously about actions and partitions of a set of games.
We �nd that in equilibrium agents will partition the set of games according to
strategic compatibility of the games. If the sets of Nash equilibria of any two
games are disjoint agents will always distinguish these games in equilibrium.
Whenever this is not the case though, interesting situations arise. In particular
learning across games can destabilize strict Nash equilibria, stabilize Nash equi-
libria in weakly dominated strategies and mixed equilibria in 2�2 Coordination
games.
Furthermore we have seen that learning across games can explain several

experimental results, such as the Traveler�s dilemma, but also deviations from
subgame perfection that are sometimes observed in experiments. We �nd it
very intuitive that participants that face a new situation in an experiment try
to draw analogies to similar situations experienced outside the laboratory. We

34Other papers in the automaton tradition investigating equilibria in the presence of com-
plexity costs are Abreu and Rubinstein (1988) or Eliaz (2003). Germano (2007) studies the
evolution of rules for playing stochastically changing games.
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conjecture that analogy thinking could constitute an explanation for many more
experimental results. This line of research seems thus very worthwhile pursuing.
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A Appendix: Some De�nitions

De�nition: Asymptotically Stable Point Let
�
x = F (x) be a dynamical

system in a set X � Rc; c 2 N. A restpoint x� (i.e. a point s.t. F (x�) = 0)
is said to be asymptotically stable if the following two conditions hold.

(i) Given any neighborhood N1 of x�; there exists some other neighborhood
of it, N2, such that, for any path (or solution) x(�); if x(0) 2 N2 then
x(t) 2 N1 for all t larger 0.

(ii) There exists a neighborhood N3 of x� such that, for any path x(�); if
x(0) 2 N3; then limt!1 x(t) = x

�.

De�nition (Lyapunov Stability) A point is called Lyapunov stable if con-
dition (i) from the previous de�nition is satis�ed.

De�nition (Unstable Restpoint) A restpoint (i.e. a point s.t. F (x�) = 0) is
called unstable if condition (i) from the previous de�nition is not satis�ed.
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B Appendix: Stochastic Approximation - Intu-
ition and Proofs from Section 2

B.1 Mean Motion

It is intuitively clear that the mean motion of action choice frequency pitmk will
depend on how much action am is reinforced in analogy class gk compared to
other actions. Denoting expectations by h::i ; we can state the following Lemma.

Lemma 1 The mean change in action choice probabilities pitmk of player i is
given byD
p
i(t+1)
mk � pitmk

E
=

1

�itk
[pitmkr

it
k S

it
mk(x

t) + "0(1�Mpitmk)] +O
�
(
1

�itk
)2
�
:

(14)

Proof. In the proof of Lemma 1 and 2 we will index player 2�s actions by n
instead of m to avoid confusion. Focus without loss of generality on player 1: It
follows from (2) and (3) that the change in action choice frequency for action
am in analogy class gk is given by,

p
1(t+1)
mk � p1tmk

=

8>>>><>>>>:
�1tmk+�

1(at;
t)+"0P
ah2A1

�1thk+�
1(at;
t)+M"0

� �1tmkP
ah2A1

�1thk
if gk; am 2 wit

�1tmk+"0P
ah2A1

�1thk+�
1(at;
t)+M"0

� �1tmkP
ah2A1

�1thk

if gk 2 wit
am =2 wit

�1tmk+"0P
ah2A1

�1thk+M"0
� �1tmkP

ah2A1
�1thk

if gk =2 wit
(15)

or equivalently

p
1(t+1)
mk � p1tmk =

8>>>><>>>>:
(1�p1tmk)�

1(at;
t)+"0(1�Mp1tmk)P
ah2A1

�1thk+�
1(at;
t)+M"0

if gk; am 2 wit

�p1tmk�
1(at;
t)+"0(1�Mp1tmk)P

ah2A1
�1thk+�

1(at;
t)+M"0

if gk 2 wit
am =2 wit

"0(1�Mp1tmk)P
ah2A1

�1thk+M"0
if gk =2 wit

: (16)

The �rst event has the following probabilityP

j2� fj Ijk

X
Gl2G

q1tl Iklp
1t
mk

P
an2A2

�P
Gl2G q

2t
l

P
gk2Gl

p2tnkIjk

�
where Ijk(Ikl)

= 1 if 
j 2 gk (gk 2 Gl) and zero otherwise. The second event has probabilityP

j2� fj Ijk

X
Gl2G

q1tl Ikl
P

ah2A p
1t
hk(1 � �hm)

P
an2A2

�2tnj where �hm = 1 if

h = m and zero otherwise.
The third event has probability

P

j2� fj(1� Ijk) + fjIjk

X
Gl2G

q1tl (1� Ikl):

Summing over all possible events (weighted with the probabilities) gives the
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mean change:D
p
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E
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X
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fj
X
Gl2G

q1tl Ikl"
p1tmk
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2
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p1t�k
X
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�p1tmk�1(a1�; a2n; 
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2
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+

0@1� X

j2gk

fj
X
Gl2G

q1tl Ikl

1A "0(1�Mp1tmk)P
ah2A1

�1thk +M"0
(17)

Denote �1tk =
P

ah2A1
�1thk and remember that r

it
k :=

P
Gl2G;
j2� q

it
l fjIklIjk -

where Ikl = 1 if gk 2 Gl and zero otherwise.
P

Gl2G q
it
l Ikl is the frequency with

which a partition containing gk is used (in population i) and
P


j2� fjIjk the

(independent) probability that a game contained in gk is played. Then this can
be rewritten concisely as follows,D

p
1(t+1)
mk � p1tmk

E
=

1

�1tk
[p1tmkr

1t
k S

1t
mk(�) + "0(1�Mp1tmk)] +O
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1
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�
: (18)

To see that the di¤erence between the �rst term in (18) and expression (17) is
indeed of order ( 1

�1tk
)2 note that,

p1tmkr
1t
k S

1t
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D
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M"0

�1tk (�
1t
k +M"0)

:

The mean change in action choice probabilities in analogy class gk is deter-
mined by the payo¤ in gk of the action in question (am) relative to the average
payo¤of all actions (Sitmk(x

t)) scaled by current choice probabilities pitmkr
it
k : Sim-

ilar laws of motion are characteristic of many reinforcement models. The second
term in brackets is a noise term. Noise tends to drive action choice probabilities
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towards the interior of the phase space. The step sizes 1
�itk

determine the speed
of learning.
Partition choice probabilities are similarly determined by the relative payo¤

Sitl (x
t) = �itl (x

t) �
P

Gh2G q
it
h�

it
h (x

t) where �itl (x
t) is the expected payo¤ net

of reasoning costs obtained when using partition Gl:

Lemma 2 The mean change in partition choice probabilities qitl of player i is
given byD

q
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l � qitl
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Proof. The changes in partition choice probabilities are given by
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where L = cardG: The �rst event occurs with probabilityP
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Denoting

P
Gl2G �

1t
l =: �1t the previous expression can be rewritten con-

cisely as,D
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Proof of Proposition 1:
Proof. Write the stochastic process fxtgt in the form

p
i(t+1)
mk = pitmk +

1

�itk

eY itmk (22)

q
i(t+1)
l = qitl +

1

�it
Y itl

8i = 1; 2;8am 2 Ai;8gk 2 P+(�);8Gl 2 G: The Y it and eY it can be decomposed
as follows, eY itmk = eyimk(xt) + e!it(ct; dt) + e�it and Y itl = yil(x

t) + !it(ct; dt) + �it.
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The sequences f�itgt and fe�itgt are asymptotically negligible. The sequences
f!itgt and fe!itgt are noise keeping track of the players randomizations at each
period as well as of random sampling from �: In fact ct is the indicator function
for outcomes of players randomizations between actions and partitions and dt

the indicator function for outcomes of random sampling of games. And �nallyeyimk(xt) = pitmkritk Sitmk(�) + "0(1 �Mpitmk) and yil(xt) = qitl Sitl (�) + "1(1 � Lqitl )
are the mean motions derived before. Taking into account the normalization
the unique step size of order t�1; �itk = �it = 1= (�+ t�) can be substituted
in (22). It can be veri�ed that the following conditions hold for the normal-
ized process. (C1) : E[!itj!in; n < t] = 0 and E[e!itje!in; n < t] = 0. (C2):

suptE
��Y it��2 < 1; suptE

���eY it���2 < 1; (C3): Eeyi(pt; qt) and Eyi(pt; qt) are
locally Lipschitz, (C4):

P
t

1
�+t�

���it�� < 1 with probability 1 and (C5):P1
t=0

1
�+t� = 1; 1

�+t� � 0;8t � 0; and
P1

t=0

�
1

�+t�

�2
< 1 (decreasing

gains). Under these conditions the normalized process can be approximated

by the deterministic system
�
�
p
i

mk = eyimk(x)� ;8am 2 Ai; gk 2 P+(�) and�
�
q
i

l = y
i
l(x)

�
;8Gl 2 G; i = 1; 2 as standard results in stochastic approxima-

tion theory show.35

C Appendix: Proofs from Sections 3 and 4

In some of the proofs below we will use the fact that agents will choose a
best response at any stable point x� also in "o¤ equilibrium" analogy classes,
i.e. those that are visited with probability O("1): We are entitled to do so
by Assumption 1. We now quickly explain why this is so and why we think
Assumption 1 makes sense. Note that at any restpoint

�pimkSimk
(1�Mpimk)

=
"0
rik
.

Now if analogy class gk is "o¤ the equilibrium path", i.e. visited with probability
O("1); then the RHS can be rewritten "0

O("1)
. This expression - if "0 and "1 tend

to zero at the same rate - will be positive, �nite and bound away from zero.
But then, if am is not a best response (and thus Simk � 0) we need pimk ! 0.
On the other hand if am is a best response (and thus Simk � 0), we need pimk
to be bound away from zero. Finally, if "1 tends to zero at a faster rate than "0
the RHS diverges and all actions will be used with uniform probability in "o¤
equilibrium" analogy classes. Then the predictions can be di¤erent from Nash
equilibrium (even for arbitrarily small reasoning costs), but it seems a rather
trivial way to obtain such predictions.

35See the textbooks of Kuschner and Lin (2003) or Benveniste, Metevier and Priouret (1990).
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Proof of Proposition 2:
Proof. We will show that no point bx that induces phenotypic play (�1j ; �2j ) =2
ENash(
j) can be stable. As (�

1
j ; �

2
j ) is not a Nash equilibrium one player i will

have a strictly better response am in some game 
j . If 
j is an element of a
singleton analogy class gk the claim is immediate. Consider next the case where

j is an element of a non-singleton analogy class. Denote � := �

i(am; �
�i
j ; 
j)�

�i(�ij ; �
�i
j ; 
j) > 0 the payo¤ loss incurred by choosing �

i
j instead of the better

response am in game 
j : Consider a partition Gh = fghgZhh=1 in the support of
qi�: Assume that 
j 2 eg 2 Gh: Partition Gl = ffgh � egg; eg � 
j , 
jg coincides
with partition Gh except for the fact that instead of analogy class eg it contains
two new analogy classes given by eg � 
j and the singleton analogy class 
j .
Consequently cardGl = (cardGh)+1:We have seen above that in the singleton
analogy class player i will play a best response to the opponent�s play. But then
9� < � such that 8� < � : �il(bx) � �ih(bx) = � � (�(Zl) � �(Zh)) > 0: Thus bx
cannot be a stable restpoint.
Proof of Claim 1:

Proof. Let G1 = ff
1g; f
2g; f
3gg, G2 = f
1; f
2; 
3gg; G3 = f
2; f
1; 
3gg;
G4 = f
3; f
1; 
2gg and G5 = f
1; 
2; 
3g be the �ve possible partitions of �2:
We will �rst argue that any restpoint where qil > 0 for some l = 1; 2; 3; 4 and
i = 1; 2 is unstable. Then we will show that the restpoint with qi5 = 1 and
piC = 1=2; 8i = 1; 2 is asymptotically stable.
(i) First note that in analogy class f
3g the unique Nash equilibrium strategy

�3 = 1=2 will be observed at any asymptotically stable point. Also note that
any action is a best response to ��i = 1=2 in all games 
 2 �2: Consider
restpoints bx that involve qi1 > 0; for some i = 1; 2 . If f1 > f3 a best response to
the opponent�s play in both games 
1 and 
3 will always be played in the "o¤
equilibrium" analogy class f
1; 
3g: Consequently the payo¤ di¤erence between
partition G3 and all other partitions on average at bx : Sit3 (bx) = �(bx) � �(2) �
5"1 > 0; as the coarse partition must have probability zero at bx (and thus
�(bx) > �(2)). If f2 > f3 the same is true for G2 and if f3 > maxff1; f2g
it is true for either G2 or G3. Consequently q1 > O("0) cannot be a stable
restpoint of (5)-(6). Instability of restpoints involving qi4 > 0 for some i = 1; 2
is shown analogously. Neither can a stable restpoint involve qil > 0 for l =
2; 3: If f3 > minff1; f2g; player 1 will play a fully mixed strategy p = 1=2 in
f
2; 
3g and player 2 in analogy class f
1;
3g: It then follows immediately by
arguments analogous to those above that G2 =2 supp q1� and G3 =2 supp q2�: If
f3 < minff1; f2g analogous arguments apply.
(ii) Now we will show that the restpoint where both players choose the

coarsest partition and play the mixed strategy p = 1=2 is asymptotically stable.
The payo¤ matrix of the "average" game is given by,�

2(f1 + f3) + f2 2f2 + f1 + f3
2f2 + f1 + f3 2(f1 + f3) + f2

�
for player 1 (23)
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and �
2f1 + f2 + f3 2(f2 + f3) + f1
2(f2 + f3) + f1 2f1 + f2 + f3

�
for player 2: (24)

Given the assumption that fj < 1=2 for j = 1; 2 - (23) and (24) represent
a con�ict game with a unique Nash equilibrium in mixed strategies given by
(1=2; 1=2): Now we will show that (holding �xed q�5 = 1) this equilibrium is
asymptotically stable in the game (23) - (24). The Jacobian matrix associated
with the linearization of the perturbed dynamics at the equilibrium

�
p1; p2

�
=

( 12 ;
1
2 ) is given by

M( 12 ;
1
2 )
=

�
�2"0 1

2 (f1 + f3 � f2)
1
2 (f1 � f2 � f3) �2"0

�
:

with spectrum
n
1
2 (�4"0 �

p
(f1 + f3 � f2)(f1 � f2 � f3) + 16"20)

o
:Given our as-

sumptions on fj the term under the square root is negative and thus both eigen-
values have strictly negative real parts.36 Note also that - as (1=2; 1=2) is a Nash
equilibrium in all games - there is no analogy class in which a player i has a
strictly better response to the opponent choosing p�i = 1=2: But then as q5 = 1
minimizes reasoning costs and sign [O("0)] T 0 , pimk S 1

2 we know that x
� is

asymptotically stable.
Proof of Claim 2:

Proof. (i) First we show that no stable point can induce the equilibrium (A; a)
in 
1. Note that whenever f1 > � 17

6 +
1
6

p
409; action A is a best response of

the row player in the "average game" to player 2�s equilibrium behavior at any
such point (as by Proposition 2, a Nash equilibrium has to be induced in 
2).
But then at any point x where (A; a) is induced in 
1: SC(x) = �(2)��(1) > 0
destabilizing any such point. Furthermore no point where either player holds
the coarse partition can induce a Nash equilibrium in both games and thus (by
Proposition 2) can�t be stable. Finally if � is high (� > �(�)), both players
will use the coarse partition, but then whenever f1 < 2

3 ; action a is not a best
response to A for player 2:
(ii) Now we show that the point x� is asymptotically stable. First note that

as suppENash(
1)\ suppENash(
2) = ?; using the coarse partition will induce
a strict payo¤ loss. But then for � small enough, SC(x�) < 0;8x 2 Nx� : On
the other hand asymptotic stability of

�
1
2A�

1
2B;

1
2a�

1
2b
�
in 
2 follows from

arguments analogous to those developed in part (ii) of Claim 1 (Note that the
third action C (c) is strictly dominated for both players in 
2). Stability of (C; c)
in 
1 follows from standard arguments. See e.g. Proposition 5.11 in Weibull
(1995).
Proof of Proposition 3:

Proof. (i) As card� = 1 there is trivially only one partition and one analogy
class g = 
1: But then part (i) of this proposition is a standard result. See for
example Proposition 5.11 in Weibull (1995).

36Under the unperturbed dynamics all eigenvalues are purely imaginary in this class of
games. Posch (1997) has shown that unperturbed reinforcement learning leads to cycling.
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(ii) Let the games have payo¤ matrices given by


1 :

H L ::
H a1; a1 a2; a3 ::
L a3; a2 a4; a4 ::
: : :

; 
2 :

H L ::
H b1; c1 b2; c3 ::
L b3; c2 b4; c4 ::
: : :

; (25)

where (H;H) is a strict Nash equilibrium. As we want 
2 to have a unique
equilibrium in mixed strategies, that is stable to learning in a single game we
assume wlg that b1 > b3; b4 > b2; c1 < c3, that c4 < c2 and that no other
equilibria exist. (As will become clear below, the arguments in the proof ex-
tend directly to mixed equilibria with more than two actions in their support).
(See part (ii) of the proof of Claim 2). Assume also f1=f2 2 (f(�); f(�))
wheref(�) is such that strategy H is a best response in the average game to�
f1 + f2(

c4�c3
c1+c4�(c2+c3) )

�
H� (1� (�))L for player 1 (row player). Think of rest-

points that induce the strict Nash equilibrium
�
�1H1; �

2
H1

�
= (1; 1) in game 
1: If

at such a restpoint the coarse partition GC is used with probability q�iC > 0; then
we need to have piHC = p

i
H1 = 1. (The condition for phenotypic play in game


1 is �
i
H1 = q

i
C p

i
HC + (1� qiC)piH1 = 1). In order to induce a Nash equilibrium

also in game 
2 one needs p
i
H2 < �

i
H2; where �

i
H2 is the equilibrium frequency

of action H in 
2: But then for any player either p
i
HC = 1 is not a best response

to the phenotypic play of player �i or a strictly higher payo¤ is associated with
the coarse partition at such an equilibrium. Consequently (by Proposition 2)
no such stable point can have q�iC > 0 for any i = 1; 2: Consider now restpoints
at which the �ne partition is used with asymptotic probability 1 by both play-
ers. For at least one player action choice in the "o¤ equilibrium" analogy class
gC = f
1; 
2g will be a best response to phenotypic play of the opponent in
both games 
1 and 
2: As the coarse partition has smaller reasoning cost, the
diagonal element of the Jacobian matrix associated with the linearization of the

dynamics at this restpoint,
�
@
�
qC=@qC

�
= �(2)� �(1) + O("0) > 0. The strict

Nash equilibrium
�
�1H1; �

2
H1

�
= (1; 1) cannot be induced at any stable restpoint.

Proof of Proposition 4:
Proof. (i) Again as card� = 1 there is trivially only one partition and one
analogy class g = 
1; where 
1 is given by (25). The spectrum of the Jacobian
matrixM associated with the linearization of the dynamics at the mixed equi-
librium b�1H1 = a4�a3

a1+a4�(a2+a3) = b�2H1 is given by f�1; �2g = �2"0 � �iH1(1 �
�iH1)(a1 + a4 � (a2 + a3)). Consequently M has an eigenvalue with lim"0!0

�i("0) > 0:
(ii) Let the 2� 2 game 
2 be again the game described in (25). The mixed

equilibrium of the average game is given by f1(a4�a3)+f2(b4�b3)
f1(a1+a4�(a2+a3))+f2(b1+b4�(b2+b3)) =

a4�a3
a1+a4�(a2+a3) given our assumptions:Consider the restpoint where both players

hold the coarse partition and choose piHC = b�1H1 with asymptotic probability
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one. This restpoint is asymptotically stable whenever f1=f2 < bf(�) as can be
shown in analogy to part (ii) of the proof of Claim 2.
Proof of Proposition 5:

Proof. (i) As card� = 1 there is only one partition and one analogy class. De-
note aiw the strategy that is weakly dominated by another strategy a

i
d for player

i in game 
1: Clearly �
i(aid; x

�i; 
1)��i(aiw; x�i; 
1) > 0;8x�i 2 intX�i: Con-
sider a restpoint bx that induces aiw: As bx is interior there exists a neighborhood
Nbx of bx s.t. �i(aid; x�i; 
1)� �i(x; 
1) + O("0) > 0;8x 2 Nbx\ intX and conse-
quently bx cannot be a stable restpoint.
(ii) We will show that the restpoint x� where both players hold the coarse

partition GC = f
1; 
2g with asymptotic probability q�C = 1 is asymptotically
stable. Consider �rst action choice in gC = f
1; 
2g. For all x in an open
neighborhood of x� we have that

P
�

�
�i(ai; x�i; 
j)� �i(x�; 
j)

�
+O("0) < 0;

8ai 6= aiw and that
P

�

�
�i(aiw; x

�i; 
j)� �i(x�; 
j)
�
+ O("0) > 0, as aiw is a

strict best response to x�i in game 
2 and a best response in 
1. Next note
that in all "o¤-equilibrium" analogy classes action choice will converge to a best
responses to a�iw and consequently deviations in partition choice frequencies will
lead at best to gains of order "0: But then there exists a neighborhood N

0

x� of
x� such that 8� > 0;

P
�

�
�i(bx; x�i; 
j) � �i(x; 
j)� � (�(1) � �(x)) > 0;

8x 2 N 0

x�\X; i = 1; 2: Consider the (relative entropy) function associated with
x�; given by Di(x�; x) =

P
A1�A2�G x

� ln
x�h
xh
: De�ne the sum over the entropy

functions for both players by Q(x�; x) = D1(x�; x) +D2(x�; x): It follows from

(26) that
�
Q(x�; x) < 0. Thus Q(x�; x) is a strict Lyapunov function and x�

asymptotically stable.
Proof of Proposition 6:

Proof. Consider any partition Gl 6= GF : As Gl is not the �nest partition there
are two games, denote 
1 and 
2 that are seen as analogous and for which the
same action choice is made. As SNash(
1) \ SNash(
2) = ? by assumption
no Nash equilibrium is played in at least one of the two games. It follows
from Proposition 2 that q�l = 0: Consequently if SNash(
j) \ SNash(


0

j) = ?,
8
j ; 
0j 2 � only restpoints that place probability one on the �nest partition
can be asymptotically stable. On the other hand it is clear that if 9
1; 
2 2 �
s.t. SNash(
1) \ SNash(
2) 6= ? the �nest partition need not necessarily arise.
Examples where this is the case have been analyzed above.
Proof of Claim 3:

Proof. First note that choosing ai = 180 is the only best response to a�i = 180
in game 
180 and choosing ai = 300 is the unique best response to a�i = 300
in analogy class f
0; 
5g. Denote by x� the point from Claim 3. Next note
that our assumptions imply that the expected payo¤ di¤erence between G� and
the coarsest partition GC �i(x�) � �iC(x�) � minf120f0 + 115f5; 180f180g �
(�(2)� �(1)) > 0. The di¤erence between G� and the �nest partition GF
is �i(x�) � �iF (x�) = �(3) � �(2) � 4f5 > 0 given our assumptions on the
reasoning cost. It is immediate to verify that all other possible partitions of
cardinality two lead to strictly worse expected payo¤s than G�. Remember
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that restpoints are hyperbolic. But then, as expected payo¤s are continous
functions of x�i, there exists an open neighborhood of x�; denoted by Nx� s.t.P

�

�
�i(x�; x�i; 
j)� �i(x; 
j)

�
� (�(2)� �(x)) > 0;8x 2 Nx�\ intX;i = 1; 2

Proof of Claim 4:
Proof. Note that action choices at x� are best responses in the singleton
analogy classes. Also f2 >

f1
15 is a su¢ cient condition s.t. choosing "Non-

Nash" is the only best response to f1"Top" � f2"Bottom" for column play-
ers in analogy class f
1; 
2g. Next note that the expected payo¤ di¤er-
ence for row players (denote i = 1) between G1� and the coarsest partition
G1C is �1(x�) � �1C(x�) � minf35f1; 20f2 + 330f3g � (�(2)� �(1)) > 0. As
cardA1 = 2 no partition can have higher cardinality than 2 for the row player
(see the Remark following Proposition 6). And as all choices are best re-
sponses in each game taken separately all other partitions of cardinality two
will yield strictly lower payo¤s at x�. Similarly for the column players (de-
note i = 2) the payo¤ di¤erence between partition G2� := ff
1; 
2g; f
3gg and
the coarsest partition G2C is �

2(x�) � �2C(x�) = 280f1 + 10f2 � (�(2)� �(1))
whereas the di¤erence between the �nest partition G2�F and partition G2� equals
�2F (x

�)� �2(x�) = 20f1 � (�(3)� �(2)). The latter is strictly positive (under
our assumptions) whenever e� < 20f1. It then follows by analogous arguments
to those employed several times above that x� is asymptotically stable.
Proof of Claim 5:

Proof. Consider the Rubinstein Bargaining game with discount factor � = �1f1.
This is the expected discount factor when the games are not distinguished (and
game 
1 occurs with frequency f1). Call this game the "average game". Player

1 chooses a1 =
j

1
1+�1f1

k
1
M

and player 2 chooses b2 = 1�
j

1
1+�1f1

k
1
M

in any Nash

equilibrium of the average game in which no player uses a strategy that is weakly
dominated by some other pure strategy.37 As (because of the perturbation)
all restpoints are interior this implies that, given any payo¤ linear selection
dynamics, these strategies will be observed with asymptotic probability one in
the average game. (See e.g. Proposition 5.8 in Weibull (1995)).
Now we will show that there exists an asymptotically stable point x� of the

dynamics (5)-(6) in which both players hold the coarse partition with asymp-

totic probability one and choose a1� =
j

1
1+�1f1

k
1
M

and b2� = 1 �
j

1
1+�1f1

k
1
M

when visiting analogy class f
1; 
2g: First note that when visiting the "o¤ equi-
librium" analogy classes gU and gR the best response of player 1 is always to
play a1 = a1�: The best response for player 2 is to play b2 = b2� when visiting
gR, but she will end up randomizing between strategies (a; b) with b � b2� in

37The proof goes as follows. Assume that agents are at a NE which is not a SPNE. If
b2� > b2SPNE ) (b2� � 1

M
) weakly dominates b2�. (For a1 � a1� both strategies yield

the same payo¤ whereas if a1 = a1� + 1
M

strict gains will be made). If b2� < b2SPNE )
(b2� + 1

M
) weakly dominates b2�. (If b2 � (b2� + 1

M
) there is no payo¤ di¤erence, whereas

if b2 > (b2� + 1
M
) strict gains will be made whenever b1� � b1SPNE . But if not (b1� � 1

M
)

weakly dominates b1�).
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gU . "Gross" gains (not taking into account the reasoning cost) by using a �ner
partition are of order "0. But then net gains are negative, 8� > 0. Let Nx� be
an open neighborhood of x� and denote �(x) the total reasoning cost at x; i.e.
�(x) =

P
Gl2G ql�(Zl): Then 8� > 0;X

�

�
�i(x�; x�i; 
j)� �i(x; 
j)

�
� (�(1)� �(x)) (26)

= O("0)� (�(1)� �(x)) > 0;

8x 2 Nx�\ intX;i = 1; 2. A strict Lyapunov function can be found as above.

D Appendix: Proofs from Section 5

In the proof of Proposition 7 we will use the (negative) entropy function '(q) =
�
P

G ql ln ql as noise function (analogously for action choice frequencies). Using
this function corresponds to using stochastic perturbations with extreme value
distributions and leads to the logit choice function.38 In general the results
obtain with any function '(q) ('(p)) satisfying the following: (i) '(q) should be
strictly concave (i.e. '00(q) negative de�nite) and (ii) the gradient of '(q) should
become arbitrarily large near the boundary of the phase space. See Hofbauer
and Hopkins (2005).
Proof of Proposition 7:

Proof. (i) The �rst-order conditions for problem (9) are �l(�) + "1'0(ql) =
0;8Gl 2 G and

P
Gl2G ql = 1:With entropy as noise function the agent�s choices

are given by

qitl =
exp"

�1
1 �

it
l (�)P

Gh2G exp
"�11 �

it
h (�)

=: Bl(�) (27)

Consider next the expected motion of the partition choice frequencies. We can

write
D
q
i(t+1)
l � qitl

E
= Bl(�

i(t+1)
(�)) � Bl(�

it
(�)) which can be approximated

by
D
q
i(t+1)
l � qitl

E
=
P

Gh2G
@Bl(�)
@�

i
h(�)

D
�
i(t+1)

h (�) ��ith (�)
E
+O

�
1
t2

�
:Noting that

@Bl(�)
@�

i
l(�)

= "�11 ql(1�ql) and @Bl(�)
@�

i
h(�)

= �"�11 qlqh; 8h 6= l we can rewrite the previous
equation as

D
q
i(t+1)
l � qitl

E
= "�11 ql

24 (1� ql)
D
�
i(t+1)

l (�)��itl (�)
E

�
P

Gh 6=Gl
qh

D
�
i(t+1)

h (�)��ith (�)
E 35+O� 1

t2

�
:

Next note that
D
�
i(t+1)

l (�)��itl (�)
E
= 1

t+�+1 [�l(�)��
it

l (�)], where � here is the
weight placed on the initial beliefs. Furthermore it follows from the �rst-order
conditions that ��l(�)+

P
Gh2G qh�h(�) = '(q)�ln ql =: �(q) . Denoting "

�1
1 =

38This function has been widely used in the literature. See Fudenberg and Levine (1998),
Hopkins (2002) or Hofbauer and Sandholm (2002) among others.
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�; we have
D
q
i(t+1)
l � qitl

E
= �

t+�+1q
t
l

�
Sitl + "1�(q)

�
+O

�
1
t2

�
:The stochastic ap-

proximation then yields
�
q
i

l = �
�
qilS

i
l (x) + "1�(q)

�
; which (up to a di¤erence

in the noise term and a multiplicative constant (�)) is identical to (6):39 Note
though that the noise term ("1�(q)) is still decreasing in ql. The �rst-order con-
ditions for problem (10) are given by

P

j2gik

fj
P

an2A2
�(aim; a

�it
n ; 
j)z

�it
n (gk)+

"0(1 + ln p
it
mk) = 0;and

P
Ai
pimk = 1; 8aim 2 Ai; gk 2 P+(�). Denote by Bm(�)

the associated choice functions and let
Ez
�
�itmk(�)

�
=
P


j2gik
fj
P

an2A2
�(aim; a

�it
n ; 
j)z

�it
n (gk) be the expected

payo¤ of player i when choosing action am given beliefs z�it(gik). Note that
@Bm(�)

@Ez [�mk(�)] = "�10 pmk(1 � pmk) and @Bm(�)
@Ez [�hk(�)] = �"0phkpmk: Furthermore


z�i(t+1)(gik)
�
�


z�it(gik)

�
= ritk

P

j2gk fj

��itj �z�it(gk)
t+� . But then again we

can writeD
p
i(t+1)
mk � pitmk

E
=
"�10
t+ �

pitmk

�
(1� pitmk)

�
ritk �

it
mk(�)� Ez�itmk(�)

�
�
P

ah 6=am p
it
hk

�
ritk �

it
hk(�)� Ez�ithk(�)

� �+O� 1
t2

�
:

From the �rst-order condition we get
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, which is identical to (5) up

to a di¤erence in the noise term (and a multiplicative constant): As �0(pk) < 0
and furthermore the sign of O("0) is preserved the stability properties of the
process are those of (5) - (6).
(ii) Now consider the process where agents correlate action and partition

choice employing choice rule (11). The �rst-order conditions for problem (11)
are given by
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Gl2G ql = 1: These �rst-order con-

ditions lead to the same choice functions where in (27) �itl (x
t) is used instead

of the historical payo¤s �
it

l (�): The stochastic approximation under choice rule
(11) will coincide up to a multiplicative constant with that of rule (9)-(10).
Proof of Proposition 8:

Proof. It follows immediately from the argument developed in the proof of
Proposition 2 above that this proposition continues to hold. Furthermore when-
ever card� = 1 the process SFP1 with choice rules (9) and (10) coincides with
the process SFP2 with choice rules (9) and (12). Consequently part (i) of Propo-
sitions 3, 4 and 5 continues to hold. On the other hand some asymptotically
stable restpoints under SFP1 will be stable under SFP2 only if additional con-
ditions are met. Consider for example Proposition 3. A necessary condition for
the equilibrium in weakly dominated strategies aiw to be phenotypically induced
in 
1 at a stable restpoint is that a

�i
w 2 BR(f1a�i � f2aiwj
1). The following

39For the �ctitious play process it is convenient to replace the assumption of vanishing noise
by an assumption that "1 = "0 = " is a �xed but arbitrarily small number. In particular "
has to be smaller than the smallest increment of the reasoning cost function.
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example demonstrates that part (ii) of Proposition 3 can fail. Let two games
occurring with the same frequency be given by


1 :

H L
H 2; 2 3; 1
L 2; 1 4; 4

; 
2 :
H L

H 5; 5 1; 0
L 0; 0 0; 0

:

(H;H) is a Nash equilibrium in weakly dominated strategies in 
1 and a strict
Nash equilibrium in 
2: Now note that if player 1 (the row player) chooses L in

1 and H in 
2; the best response of player 2 in game 
1 to the belief

1
2H �

1
2L

is to play L in game 
1: Consequently a
�i
w =2 BR(f1a�i�f2aiwj
1). Now starting

from (H;H) a deviation by player 2 (to play strategy �L � (1 � �)H for some
small � > 0 in 
1) immediately induces player 1 to play strategy L in 
1 as
a best response to this observation. But then in turn player 2 will choose L
as a best response to the belief 12H � 1

2L: Similar considerations are true for
Propositions 4 and 5. The result relating choice rule (9) and (12) to choice rule
(13) is shown in analogy to the proof of Proposition 7.

E Appendix: Additional Experimental Results

In this section we brie�y describe the other results (in the section Static Games
with Complete Information) from the paper by Goeree and Holt (2001) and
indicate how they might be given an interpretation in terms of learning across
games.
Matching Pennies Games
They examine three matching pennies games with the following payo¤matrix

Left Right
Top x; 40 40; 80
Bottom 40; 80 80; 40

:

If x = 80 play in the laboratory almost perfectly conforms to the Nash equi-
librium prediction of choosing either actions with equal probability. If x = 44
a large majority of row players choose "Bottom" whereas column players tend
to choose "Left". If x = 320 row players tend to choose "Top" whereas col-
umn players choose "Right". Think of a set of games where x 2 [0; 350] \ N
and imagine that all players hold partitions of cardinality two. One half of the
players classify all games with x < x in one analogy class and those with x � x
in another analogy class. The other half of players acts in the same way relying
on a di¤erent threshold value x; though. By choosing the threshold values and
reasoning costs appropriately an asymptotically stable point can be constructed
consistent with the experimental observation.
Minimum E¤ort Games
In the minimum e¤ort game two players have to simultaneously choose a
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level of e¤ort ai from the set A = [110; 170] \ N: Payo¤s are given by

�i(a; c) = 6 +minfai; ajg � cai;

where c 2 [0; 1] is the marginal cost of providing one unit of e¤ort. All points
where both players provide the same level of e¤ort are Nash equilibria. If c = 1;
though, choosing a = 110 weakly dominates all other e¤ort choices. If c = 0
choosing a = 170 is a weakly dominant strategy. Goeree and Holt (2001) �nd
that if c = 0:1 a majority of participants choose a = 170. On the other hand if
c = 0:9 most participants choose a = 110. Goeree and Holt (2001) claim that
"Nash theory is silent" about these results. Clearly, though, if one takes into
account the possibility that players might classify games in di¤erent analogy
classes, Nash theory can say something about these results.
Coordination Games
They also let subjects interact in two versions of the following Coordination

Game
L H S

L 90; 90 0; 0 x; 40
H 0; 0 180; 180 0; 40

:

In one treatment x = 0 and (almost) all participans choose action H. If x =
400 only around 67% of all row players and 75% of all column players choose
H. Unfortunately Goeree and Holt (2001) do not report what the remaining
column players choose. Again one could imagine that players classify games
with di¤erent values of x in di¤erent analogy classes, leading to an increased
number of L choices among row players as x rises.
Dynamic Games with Complete Information
Bargaining: Also Goeree and Holt (2001) describe results of experimental

bargaining games. The games are two stage games (the entire pie is gone after
stage 2) with a discount factor of � = 0:4 and � = 0:1 respectively between
stage 1 and stage 2. Initially the pie has size 5$. Average o¤ers are 2:83 and
thus close to the SPNE in the game where � = 0:4 and 3:40 and thus quite
far away in the game where � = 0:1. A possible explanation is that in games
in real life the pie does not shrink as quickly as it does in the games in the
experiment and that subjects use a (somewhat) coarse partition. Unfortunately
Goeree and Holt (2001) only provide averages of the �rst o¤ers here, so a more
precise explanation cannot be given.
"A Trust Game": As an example of a dynamic game with complete infor-

mation Goeree and Holt (2001) create a game to see whether one "should trust
others to be rational". In the game player 1 moves �rst and can choose between
a "save" action S and a risky action R. If she chooses S the game is over. If
she chooses R it is player 2�s time to choose. Player 2 has two actions available
P (punish) and N (Nash). The payo¤s are as follows:

P N
S 80; 50 80; 50
R 20; x 90; 70
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(R;N) is a strict Nash equilibrium and a SPNE of the corresponding exten-
sive form game whenever x < 70. Goeree and Holt (2001) �nd that while if
x = 10 almost all row players choose action R, if x = 68 only roughly half of
them choose R. Whenever they are actually asked to make the choice a large
majority of column players choose N .40 This could be explained by learning
across games if players face a set of games where x 2 f0; 20; 68; 88g where some
players group games with high and low x in the same analogy class.

40To be precise if x = 10 84% of row players choose R and when asked 100% of column
players choose N . If x = 68 48% of row players choose R and when asked 75% of column
players choose N .
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