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Abstract

We develop a general approach to robust inference about a scalar parameter when

the data is potentially heterogeneous and correlated in a largely unknown way. The

key ingredient is the following result of Bakirov and Székely (2005) concerning the

small sample properties of the standard t−test: For a significance level of 5% or lower,
the t−test remains conservative for underlying observations that are independent and
Gaussian with heterogenous variances. One might thus conduct robust large sample

inference as follows: partition the data into q ≥ 2 groups, estimate the model for
each group and conduct a standard t−test with the resulting q parameter estimators.
This results in valid and in some sense efficient inference when the groups are chosen

in a way that ensures the parameter estimators to be asymptotically independent,

unbiased and Gaussian of possibly different variances. We provide examples of how

to apply this approach to time series, panel, clustered and spatially correlated data.
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1 Introduction

Empirical analyses in economics often face the difficulty that the data is correlated and

heterogeneous in some unknown fashion. Many estimators of parameters of interest remain

valid and interesting even under the presence of correlation and heterogeneity, but it

becomes considerably more challenging to correctly estimate their sampling variability.

The typical approach is to invoke a law of large numbers to justify inference based on

consistent variance estimators: For an OLS regression with independent but not identi-

cally distributed disturbances, see White (1980). In the context of time series, popular

heteroskedasticity and autocorrelation consistent (“long-run”) variance estimators were

derived by Newey and West (1987) and Andrews (1991). For clustered data, which in-

cludes panel data as a special case, Rogers’ (1993) clustered standard errors provide a

consistent variance estimator. Conley (1999) derives consistent non-parametric standard

errors for data sets that exhibit spatial correlations. Other important references for related

approaches include Liang and Zeger (1986) and Arellano (1987); also seeWooldridge (2002)

for a textbook treatment. While quite general, the consistency of the variance estimator is

obtained through an assumption that asymptotically, an infinite number of observable en-

tities are essentially uncorrelated: heteroskedasticity robust estimators achieve consistency

by averaging over an infinite number of uncorrelated disturbances; clustered standard er-

rors achieve consistency by averaging over an infinite number of uncorrelated clusters;

long-run variance estimators achieve consistency by averaging over an infinite number of

(essentially uncorrelated) low frequency periodogram ordinates; and so forth. Inference

based on such nonparametric consistent variance estimators is therefore inapplicable or

yields poor results when correlations are pervasive and pronounced enough.1

More recently, a number of inference procedures have been developed that do not rely

on consistency of the variance estimator. In a time series context, Kiefer, Vogelsang, and

Bunzel (2000) show that it is possible to conduct asymptotically justified inference in a

linear time series regression based on long-run variance estimators with a nondegenerate

limiting distribution. These results were extended and scrutinized by Kiefer and Vogelsang

1Also block bootstrap and subsampling techniques derive their asymptotic validity from averaging over

an infinite number of essentially uncorrelated blocks.
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(2002, 2005), Jansson (2004) and Sun, Phillips, and Jin (2006). Müller (2007b) shows

that all consistent long-run variance estimators lack robustness in a certain sense, and

determines a class of inconsistent long run variance estimators with some optimal trade

off between robustness and efficiency. Donald and Lang (2004) point out that linear

regression inference in a setting with clusters may be based on Student−t distributions
with a finite number of degrees of freedom under an assumption that both the random

effects and cluster averages of the individual disturbances are approximately i.i.d. Gaussian

across clusters. Hansen (2007) finds that the asymptotic null distribution of test statistics

based on the standard clustered error formula for a panel with one fixed dimension and

one dimension tending to infinity become that of a Student−t with a finite number of
degrees of freedom (suitably scaled), as long as the fixed dimension is “asymptotically

homogeneous”.

This paper develops a general strategy for conducting inference about a scalar para-

meter with potentially heterogenous and correlated data, when relatively little is known

about the precise property of the correlations. The key ingredient to the strategy is a

result by Bakirov and Székely (2005) concerning the small sample properties of the usual

t−test used for inference on the mean of independent normal variables: For a significance
levels of 8.3 percent or lower, the usual t−test remains conservative2 when the variances
of the underlying independent Gaussian observations are not identical. This insight allows

the construction of asymptotically valid test statistics for general correlated and heteroge-

nous data in the following way: Assume that the data can be classified in a finite number

q of groups that allow asymptotically independent normal inference about the scalar pa-

rameter of interest β. This means that the parameter estimator β̂j from each group j

is approximately β̂j ∼ N (β, v2j ), and β̂j is approximately independent of β̂i for j 6= i.

The observations β̂1, · · · , β̂q can thus be treated as independent normal observations with
common mean β (but not necessarily equal variance), and the usual t−test concerning β
constructed from β̂1, · · · , β̂q (with q−1 degrees of freedom) is conservative. If the number

2When the variances are viewed as unknown nuisance parameters, the small sample t−test is, of course,
overall exact for underlying independent Gaussian variates. We nevertheless refer to the property of a

smaller than nominal rejection probability under the null hypothesis for unequal variances as ’conserva-

tiveness’ in the remainder.
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of observations is reasonably large in all groups, the approximate normality β̂j ∼ N (β, v2j )
is of course a standard result for most models and estimators, linear or nonlinear.

The knowledge about the correlation structure in the data is embodied in the assump-

tion that β̂1, · · · , β̂q are (approximately) independent. Compared to consistent variance
estimators, this approach reduces the requirement of uncorrelatedness in the data to a

finite amount. What is more, by invoking the results of Müller (2007a), we show that

the t−statistic approach efficiently exploits this assumption in some sense. Of course, a
stronger (correct) assumption, i.e. larger q, will typically lead to more powerful inference,

so that one faces the usual trade-off between robustness and power in choosing the number

of groups. In the benchmark case of underlying i.i.d. observations, a 5% level t−statistic
based test with q = 16 equal sized groups loses at most a 5.8 percentage points of asymp-

totic local power compared to inference with known (or correctly consistently estimated)

asymptotic variance in an exactly identified GMM problem. The robustness vs. power

trade-off is thus especially acute only for data sets where an even coarser partition is

required to yield independent information about the parameter of interest.

This t−statistic approach to inference in the presence of pervasive correlations advances
the literature on inference based on inconsistent variance estimators in several ways: First,

it is generic strategy that can be employed in different contexts, such as in time series data,

panel data or spatially correlated data. Second, due to the small sample conservativeness

result, the approach allows for unknown and unmodelled heterogeneity. In a time series

context, for instance, this means that unlike Kiefer and Vogelsang (2005), we can allow for

low frequency variability in the second moment of the moment condition, and in a panel

context, we do not require the asymptotic homogeneity as in Hansen (2007). Third, the

t−statistic approach is very easy to implement, and does not require any new tables of
critical values. Fourth, the crucial regularity condition–the assumption that β̂1, · · · , β̂q
are approximately independent and distributed N (β, v2j )–is more explicit and maybe eas-
ier to interpret than, say, the primitive conditions underlying consistent long-run variance

estimators, or the value of the bandwidth as a fraction of the sample size in Kiefer and

Vogelsang (2005). Finally, and perhaps most importantly from an econometric theory

perspective, the t−statistic approach in some sense efficiently exploits the information
contained in this regularity condition; to the best of our knowledge, this is the first gen-
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eral large sample efficiency claim about the test of a parameter value that does not involve

consistent estimation of the asymptotic variance.

The approximate normality of β̂j of group j data stems from an appeal to a central limit

theorem. If within group correlations become very strong, this argument might become

less plausible, as β̂j can no longer be thought of as an average of many approximately

independent quantities.3 As long as the independence of the β̂j’s remains a compelling

assumption, one could resort to non-parametric location tests such as sign and rank tests

and perform asymptotically valid inference in that way. We do not treat such an extension

in this paper.

The t−statistic approach to inference has an important precursor in the work of Fama
and MacBeth (1973). Their work on empirical tests of the CAPM has motivated the

following widespread approach to inference in panel regressions with firms or stocks as

individuals: Estimate the regression separately for each year, and then test hypotheses

about the coefficient of interest by the t−statistic of the resulting yearly coefficient esti-
mates. The Fama-MacBeth approach is thus a special case of the method described above,

where observations of the same year are collected in a group. While this approach is rou-

tinely applied, we are not aware of a formal justification. One contribution of this paper is

to provide such a justification, and we find that as long as year coefficient estimators are

approximately normal (or scale mixtures of normals) and independent, the Fama-MacBeth

method results in valid inference even for a short panel that is heterogenous over time.

The rest of the paper is organized as follows: Section 2 discusses properties of the small

sample t−statistic for independent Gaussian observations of potentially heterogeneous
3In such circumstances, of course, also the usual way of conducting inference based on consistent

variance estimator fails, as the full sample estimator β̂ is typically a weighted average of the β̂j ’s, j =

1, · · · , q, and thus not normally distributed. Under the assumption of independent β̂j ’s, one might argue
that the approximate normality of β̂ remains a more convincing approximation; but the t−statistic also
remains approximately distributed Student−t even when the underlying observations are not exactly
Gaussian. In fact, as a further consequence of the small sample conservativeness result, the usual t−test
remains exactly valid as long as the β̂j ’s are independent and the distribution of each β̂j can be written

as a scale mixture of normals, which is the case for a rather large class of non-normal distributions. The

t−statistic approach is thus formally more robust against non-normal β̂j ’s than standard inference based
on a consistent variance estimator.
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variance. Section 3 lays out in detail how this result can be exploited to obtain robust

large sample inference, formalizes the large sample efficiency claim and derives some other

theoretical properties of this approach. In Section 4, we discuss applications to time series

data, panel data, clustered data and spatially correlated data, and provide some Monte

Carlo evidence. Section 5 concludes.

2 The Small Sample t−test
Let Xj, j = 1, · · · , q, with q ≥ 2, be independent Gaussian random variables with common
mean E[Xj] = μ and variances V [Xj] = σ2j . The usual t−statistic for the hypothesis test

H0 : μ = 0 against H1 : μ 6= 0 (1)

is given by

t =
√
q
X̄

sX
(2)

where X̄ = q−1
Pq

j=1Xj and s2X = (q − 1)−1
Pq

j=1(Xj − X̄)2, and the null hypothesis

is rejected for large values of |t|.4 Note that |t| is a scale invariant statistic, that is a
replacement of {Xj}qj=1 by {cXj}qj=1 for any c 6= 0 leaves |t| unchanged. If σ2j = σ2 for

all j, by definition, the critical value cv of |t| is given by the appropriate percentile of
the distribution of a Student−t distributed random variable Tq−1 with q − 1 degrees of
freedom.

In a recent paper, Bakirov and Székely (2005) show that for a given critical value, the

rejection probability under the null hypothesis of a test based on |t| is maximized when
σ21 = · · · = σ2k and σ2k+1 = · · · = σ2q = 0 for some 1 ≤ k ≤ q. Their results imply the

4To be precise, we define the t−statistic (2) to be equal to zero if Xi = Xj for all i, j, which happens

with probability one when σ2j = 0 for all j.
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following Theorem.5 ,6

Theorem 1 (Bakirov and Székely, 2005) Let cvq(α) be the critical value of the usual

two-sided t−test based on (2) of level α, i.e. P (|Tq−1| > cvq(α)) = α, and let Φ denote the

cumulative density function of a standard normal random variable.

(i) If α ≤ 2Φ(−
√
3) = 0.08326..., then for all q ≥ 2,

sup
{σ21,··· ,σ2q}

P (|t| > cvq(α)|H0) = P (|Tq−1| > cvq(α)) = α. (3)

(ii) Equation (3) also holds true for 2 ≤ q ≤ 14 if α ≤ α1 =

0.1, and for q ∈ {2, 3} if α ≤ α2 = 0.2. Moreover, define ecvq(αi) =p
ki(q − 1) cvki(αi)2/

p
q(ki − 1) + (q − ki) cvki(αi)2, i ∈ {1, 2}, where k1 = 14 and

k2 = 3. Then for q ≥ ki + 1, sup{σ21,··· ,σ2q} P (|t| > ecvq(αi)|H0) = αi.

The usual 5% level two sided tests of (1) based on the usual t−test thus remains valid
for all values of {σ21, · · · , σ2q}, and all q ≥ 2. Also, by symmetry of the t−statistic under
the null hypothesis, Theorem 1 (ii) implies conservativeness of the usual one-sided t−test
of significance level 5% or lower as long as q ≤ 14. For q ≥ 15, however, the rejection
probability of a 10% level two-sided test (or a 5% level one-sided test) under the null

hypothesis is maximized at σ21 = · · · = σ214 and σ215 = · · · = σ2q = 0. So usual two-sided

t−tests of level 10% are not automatically conservative for large q, and the appropriate

critical value of a robust test is a function of the critical value of the usual t−test when
q = 14. In the following, our focus is on the empirically most relevant case of two-sided

tests of level 5% or lower.
5Part (ii) of Corollary 1 in Bakirov and Székely (2005) implies that (3) holds for all α ≤ P (|Tq−1| >q
(q−1)r(q−1)
q−r(q−1) ) = α0(q), where, for k ≥ 2, r(k) is the unique point in the interval (1, k) such that the

difference∆k(R) = P (|Tk| >
q

Rk
k+1−R)−P (|Tk−1| >

q
R(k−1)
k−R ) is negative for 0 < R < r(k) and is positive

for r(k) < R < k (existence and uniqueness of r(k) is established in part (i) of Proposition in Bakirov

and Székely (2005)). Since r(q − 1) < r(q) by part (ii) of their Proposition, one has ∆q−1(r(q − 1)) < 0

and, thus, α0(q) > P (|Tq| >
q

qr(q−1)
q+1−r(q−1) ) > P (|Tq| >

q
qr(q)

q+1−r(q) ) = α0(q + 1). Iterating on the above

arguments, we thus have that, for k ≥ 1, α0(q) > α0(q + k) and, since r(q + k)→ 3 by part (iii) of their

Proposition, we have α0(q) ≥ 2Φ(−
√
3).

6Before becoming aware of the paper by Bakirov and Székely (2005), we have proven (3) for α ≤ 0.05
and q ≥ 2 by refining earlier results by Bakirov (1989). Our proof differs from the approach in Bakirov

and Székely (2005), and is available on our websites.
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One immediate application of Theorem 1 concerns the construction of confidence in-

tervals for μ: a confidence interval for μ of level C ≥ 95% based on the usual formulas

for i.i.d. Gaussian observations has effective coverage level of at least C for all values of

{σ21, · · · , σ2q}. As long as the realized value of |t| is larger than the smallest cvq(α) for
which (3) holds, also p−values constructed from the cumulative distribution function of

the Student−t distribution maintain their usual interpretation as the lowest significance
level at which the test still rejects.7 As stressed by Bakirov and Székely (2005), a further

implication of Theorem 1 is the conservativeness of the usual t−test against i.i.d. observa-
tions that are scale mixtures of Gaussian variates: Let Yj = ZjVj where Zj ∼ i.i.d. N (μ, 1)
and Vj is i.i.d. and independent of {Zj}qj=1. Then by Theorem 1, the usual t−test based
on {Yj}qj=1 of the null hypothesis (1) of level 5% or lower is conservative conditional on

{Vj}qj=1, and hence also unconditionally. The usual t−test of level 5% or lower thus yields
a valid test for the median (which is equal to mean, if it exists) of i.i.d. observations with

a distribution that can be written as a scale mixture of normals. This is a rather large

class of distributions: it includes, for instance, the Student−t distribution with arbitrary
degrees of freedom (including the Cauchy distribution), the double exponential distribu-

tion, the logistic distribution and all symmetric stable distributions. For q ≤ 4, this result
was already established by Benjamini (1983), who also provides a heuristic argument for

the conservativeness of the usual two-sided t−test against scale mixtures of normals for
q ≥ 5.
More generally, as long as {Vj}qj=1 is independent of {Zj}qj=1, Theorem 1 and the

conditioning argument above imply conservativeness of the usual t−test of significance
level 5% or lower, with an arbitrary joint distribution of {Vj}qj=1. We discuss an application
of this property in Section 4.2 below.

We now explore how conservative the usual t−test becomes when the underlying obser-
vations are independent Gaussian of unequal variance. For large q, as long as none of the

σ2j dominates the average σ̄
2
q = q−1

Pq
j=1 σ

2
j (more precisely, if limq→∞ q−2

Pq
j=1 σ

4
j = 0),

a law of large numbers applied to s2X yields s
2
X − σ̄2q

p→ 0, and the t−test is asymptotically
7Based on additional results of Bakirov and Székely (2005), it is also possible to compute the appropri-

ate p−values for smaller realizations of |t|. These p−values are always larger than 8.3% and thus typically
not of primary interest.
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Figure 1: Effective Rejection Probabilities of a 5% Level t−test

of correct size as q → ∞. Theorem 1 shows that for a nominal level of 5% or smaller,

this convergence to the nominal level is from below for any sequence {σ2j}. For small q,
Figure 1 depicts the effective size of the 5% level two-sided t−test for q = 4, 8 and 16

when (i) there are two equal sized groups of i.i.d. Gaussian observations, and the ratio of

their variances is equal to a2: for i, j ≤ q/2, σ2i = σ2j , σ
2
q+1−i = σ2q+1−j and σ21/σ

2
q = a2

and (ii) all observations excepts one are of the same variance, that is for i, j ≥ 2, σ2i = σ2j ,

and σ21/σ
2
q = a2. Due to the scale invariance, the description in terms of the ratio of

variances is without loss of generality. Rejection probabilities in Figure 1 (and Figures

2 and 3 below) were computed by numeric inversion of the characteristic function of the

appropriate Gaussian quadratic form–see Imhof (1961). As can be seen from Figure 1,

for small q, the effective size can be much lower than the nominal level, but for q = 16,

the effective size does not drop much below 4% in either scenario.

Theorem 1 provides conditions under which the usual t−test remains a valid test. We
now turn to a discussion of the optimality of the t−statistic when the underlying Gaussian
variates Xj are not necessarily of equal variance. Recall that if the variances are identical,

then the usual two-sided t−test is not only the uniformly most powerful unbiased test of
(1), but also the uniformly most powerful scale invariant test (see Ferguson (1967), p. 246,

for instance). For a significance level of 5% or lower, Theorem 1 shows that the effective

level for the t−test never exceeds the nominal level if the variances σ2j are not identical.
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So if we consider the hypothesis test

H0 : μ = 0 and {σ2j}qj=1 arbitrary against H1 : μ 6= 0 and σ2j = σ2 for all j (4)

and restrict attention to scale invariant tests, then the least favorable distribution for the

q dimensional nuisance parameter {σ2j}qj=1 is the case of equal variances. In other words,
the usual t−test is the optimal scale invariant test of (4) for any given alternative μ 6= 0
when the level constraint is most difficult to satisfy. By the generalized Neyman-Pearson

Lemma (Theorem 7 of Lehmann (1986), p. 104-105), we thus have the following result.

Theorem 2 Let α and q be such that (3) holds. A test that rejects the null hypothesis for

|t| > cvq(α) is the uniformly most powerful scale invariant level α test of (4).

If one is uncertain about the actual variances of Xj, and considers the case of equal

variances a plausible benchmark, then the usual 5% level t−test maximizes power against
such benchmark alternatives in the class of all scale invariant tests. Since the one-sided

t−test is also known to be the uniformly most powerful invariant test under the (sign-
preserving) scale transformations {Xj}qj=1 → {cXj}qj=1 for c > 0 (Ferguson (1967), p.

246), the analogous result also holds for the one-sided t−test of small enough level.
Note that this optimality result is driven by the conservativeness of the usual t−test.

For α = 10% and q = 20, say, according to Theorem 1, the critical value of the t−statistic
must be amended to induce conservativeness. The resulting test is thus not optimal when

σ2j = σ2 for all j under both H0 and H1. It is also not optimal against the worst case

alternative with 14 variances identical and 6 variances zero–the optimal test against such

an alternative would certainly exploit that if 6 equal realizations of Xj are observed, they

are known to be equal to μ.

In some applications, one might have some a priori information about the variances

σ2j . In that case, it might not be attractive to base inference on a test that maximizes

power against alternatives with equal variances. For {σ2j}qj=1 known, the uniformly most
powerful test of (1) is based on z̃ = (

Pq
j=1Xj/σ

2
j)/
Pq

j=1 1/σ
2
j , which is standard normal

under the null hypothesis. Let v2j be a (nonrandom) guess of σ
2
j , and define X̃j = Xj/v

2
j .

Then a test based on the statistic t̃ =
√
qX̃/s̃X with X̃ = q−1

Pq
j=1 X̃j and s̃2X = (q −

1)−1
Pq

j=1(X̃j − X̃)2 is typically an attractive choice: If v2j = Cσ2j for some C > 0 for all
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j and limq→∞ q−2
Pq

j=1 1/σ
4
j = 0, then t̃ − z̃ converges in probability to zero as q → ∞

under the null and local alternatives, making inference based on t̃ large sample efficient.

At the same time, since X̃j ∼ i.i.d. N (0, σ2j/v4j ) whether or not v2j = Cσ2j for all j, a

two-sided test based on t̃ of level 5% or below with the usual critical value is small sample

conservative by Theorem 1. Note, however, that no small sample optimality claim akin to

Theorem 2 can be made for inference based on t̃: If indeed v2j = Cσ2j , then the appropriate

critical value for a test based on t̃ would be the (1− α/2) percentile of the (nonstandard)

null distribution of t̃, rather than the (1 − α/2) percentile of Tq−1. Also, if {v2j}qj=1 are
too heterogenous, a test based on t̃ can have low power even for very distant alternatives,

especially for small q (see the end of Section 3.1 below for a related point).

3 Large Sample t−statistic Based Inference

3.1 Asymptotic Validity and Consistency

Our main interest in the small sample results on the t−statistic stems from the following

application: Suppose we want to do inference on a scalar parameter β of an econometric

model in a large data set with n observations. For a wide range of models and estimators

β̂, it is known that
√
n(β̂ − β)⇒ N (0, σ2) as n→∞, where “⇒” denotes convergence in

distribution. Suppose further that the observations exhibit correlations of largely unknown

form. If such correlations are pervasive and pronounced enough, then it will be very

challenging to consistently estimate σ2, and inference procedures for β that ignore the

sampling variability of a candidate consistent estimator σ̂2 will have poor small sample

properties.

Now consider a partition the original data set into q ≥ 2 groups, with nj observations

in group j, and
Pq

j=1 nj = n. Denote by β̂j the estimator of β using observations in

group j only. Suppose the groups are chosen such that
√
n(β̂j − β)⇒ N (0, σ2j) for all j,

and, crucially, such that
√
n(β̂j − β) and

√
n(β̂i − β) are asymptotically independent for

i 6= j–this amounts to the convergence in distribution
√
n(β̂1 − β, · · · , β̂q − β)0 ⇒ N (0, diag(σ21, · · · , σ2q)), max

1≤j≤q
σ2j > 0 (5)

and {σ2j}qj=1 are, of course, unknown. The asymptotic Gaussianity of
√
n(β̂j − β), j =
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1, · · · , q, typically follows from the same reasoning as the asymptotic Gaussianity of the

full sample estimator β̂. The argument for an asymptotic independence of β̂j and β̂i for

i 6= j, on the other hand, depends on the choice of groups and the details of the application.

We discuss such arguments in more detail for some common econometric models in Section

4 below.

Under (5), for large n, the q estimators β̂j, j = 1, · · · , q, are approximately independent
Gaussian random variables with common mean β and variances σ2j . Thus, by Theorem 1

above, one can perform an asymptotically valid test of level α, α ≤ 0.05 of H0 : β = β0

against H1 : β 6= β0 by rejecting H0 when |tβ| exceeds the (1 − α/2) percentile of the

Student−t distribution with q − 1 degrees of freedom, where tβ is the usual t−statistic

tβ =
√
q
β̂ − β0
sβ̂

(6)

with β̂ = q−1
Pq

j=1 β̂j and s2
β̂
= (q − 1)−1

Pq
j=1(β̂j − β̂)2. By Theorem 1 (and the Con-

tinuous Mapping Theorem), this inference is asymptotically valid whenever (5) holds,

irrespective of the values of σ2j , j = 1, · · · , q. Also, by implication, the confidence interval
β̂ ± cv sβ̂ where cv is the usual (1 + C)/2 percentile of the Student−t distribution with
q − 1 degrees of freedom has asymptotic coverage of at least C for all C ≥ 0.95.8

For some applications, a slightly more general regularity condition than (5) is useful:

Suppose

{mn(β̂j − β)}qj=1 ⇒ {ZjVj}qj=1 (7)

for some real sequence mn, where Zj ∼ i.i.d. N (0, 1), the random vector {Vj}qj=1 is in-
dependent of the vector {Zj}qj=1 and maxj |Vj| > 0 almost surely. In analogy to the

8On first sight, the t−statistic based approach described may seem to be similar to subsampling.

However, the similarities do not go beyond the use of blocking the data in both the t−statistic approach
and subsampling: First, the t−statistic approach works for a fixed number q of groups, while subsampling
requires the number of subsamples to grow with the sample size. Second, in the t−statistic based approach
one calculates the estimators β̂i for each block and then forms the t−statistic tβ in (6) to conduct

asymptotically valid inference. Subsampling a t−statistic, in contrast, would approximate the distribution
of the full sample t−statistic with the empirical cdf of t−statistics calculated from each subsample. Third,
subsampling typically requires additional weak dependence assumptions, such as strong mixing, to result

in asymptotically valid inference (see, for instance, Chapters 3 and 4 in Politis, Romano, and Wolf (1999)).
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discussion of Theorem 1 in Section 2 above, condition (7) accommodates convergences

(at an arbitrary rate) to independent but potentially heterogeneous mixed normal distri-

butions, such as the family of stable symmetric distributions, and also convergences to

conditionally normal variates which are unconditionally dependent through their second

moments. Under (7), inference based on tβ remains asymptotically valid conditionally on

{Vj}qj=1 by the Continuous Mapping Theorem and an application of Theorem 1, and thus
also also unconditionally.

Under the fixed alternative β 6= β0, (5) or (7) imply that sβ̂ = Op(n
−1/2) and β̂ − β =

Op(n
−1/2), so that P (|tβ| > K)→ 1 for all K and a test based on |tβ| is consistent at any

level of significance. Under fixed heterogeneous alternatives of the null hypothesis β0 = 0

with the true value of β in group j given by βj (and βj 6= βi for some j and i), β̂j
p→ βj

for j = 1, · · · , q, and a test based on |tβ| with critical value cv rejects asymptotically with
probability one if ³

q−1
Pq

j=1 βj

´2
q−1

Pq
j=1 β

2
j

>
cv2

cv2+q − 1 . (8)

Especially for small q and large cv, (8) might not be satisfied when {βj}qj=1 are very
heterogenous, even when all βj are of the same sign. On the other hand, a calculation

shows that for q ≥ 7, a 5% level test is consistent for all alternatives {βj}qj=1 of equal sign
that are less heterogeneous (in the majorization sense, see Marshall and Olkin (1979))

than β1 = · · · = βbq/2c = 0 and βbq/2c+1 = · · · = βq 6= 0, where b·c denotes the greatest
lesser integer function.

3.2 Asymptotic Efficiency

The arguments so far imply that the t−statistic approach to inference in large samples
yields an asymptotically valid and consistent test statistic under the weak convergence (5)

or (7). Furthermore, Theorem 2 provides a small sample efficiency claim about the t−test
under heterogeneous variances. This section draws on the recent results in Müller (2007a)

and shows in which sense a corresponding large sample efficiency claim can be made about

the large sample t−statistic approach under (5).
Suppose the n observations in the potentially correlated large data set are of dimension

r× 1, so that the overall data Yn is an element of Rrn. In general, tests ϕn of H0 : β = β0

12



are sequences of (measurable) functions from Rrn to the unit interval, where ϕn(yn) ∈ [0, 1]
indicates the probability of rejection conditional on observing Yn = yn. If ϕn takes on

values strictly between zero and one then ϕn is a randomized test. As usual in large sample

testing problems, consider the sequence of local alternatives β = βn = β0+μ/
√
n, so that

the null null hypothesis becomes H0 : μ = 0. Under such local alternatives, (5) implies

{
√
n(β̂j − β0)}qj=1 ⇒ {Xj}qj=1 (9)

where Xj, j = 1, · · · , q are as in the small sample case of Section 2 above, that is Xj

are independent and distributed N (μ, σ2j). Furthermore, by the Continuous Mapping

Theorem, it also holds that(
β̂j − β0

β̂ − β0

)q

j=1

⇒ {Rj}qj=1 =
½
Xj

X̄

¾q

j=1

(10)

where X̄ = q−1
Pq

j=1Xj. The interest of (10) over (9) is that {Rj}qj=1 is a maximal
invariant of the group of transformations {Xj}qj=1 → {cXj}qj=1 for c 6= 0, so that in the
"limiting problem" with {Rj}qj=1 observed, Theorem 2 implies that a level-α test based

on |t| = √qR̄/sR =
√
qX̄/sX with R̄ = q−1

Pq
j=1Rj and s2R = (q − 1)−1

Pq
j=1(Rj − R̄)2

maximizes power against alternatives with μ 6= 0 and σ2j = σ for j = 1, · · · , q as long as
α ≤ 0.05.
Let Fn(m,μ, {σ2j}qj=1) be the distribution of Yn in a specific model m with parame-

ter β = β0 + μ/
√
n and asymptotic variance of β̂j equal to σ2j ; think of m as describ-

ing all aspects of the data generation mechanism beyond the parameters μ and {σ2j}qj=1,
such as the correlation structure of Yn. The unconditional rejection probability of a

test ϕn then is
R
ϕndFn(m,μ, {σ2j}qj=1), and the asymptotic null rejection probability is

lim supn→∞
R
ϕndFn(m, 0, {σ2j}qj=1).

The weak convergences (9) and (10) obviously only hold for some sequences of under-

lying distributions Fn(m,μ, {σ2j}qj=1) of Yn, that is some models m. The assumption (9)

is an asymptotic regularity condition that restricts the dependence in Yn in a way that

in large samples, each β̂j provides independent and Gaussian information about the para-

meter of interest β. The convergence (10) is a very similar, but slightly weaker regularity

condition. Denote byMX
0 andMR

0 the set of models m for which (9) and (10) hold under

13



the null hypothesis of μ = 0, respectively (so thatMX
0 ⊂MR

0 ), and analogously, denote

by MX
1 and MR

1 the set of models m for which (9) and (10) hold pointwise for μ 6= 0.

A concern about strong and pervasive correlations in Yn of largely unknown form means

that little is known about properties of Fn(m,μ, {σ2j}qj=1). In an effort to obtain robust
inference for a large set of possible data generating processesm, one might want to impose

that level-α tests ϕn are asymptotically valid for all m ∈MX
0 or m ∈MR

0 , that is

lim sup
n→∞

Z
ϕndFn(m, 0, {σ2j}qj=1) ≤ α for all m ∈M0 and {σ2j}qj=1 with max

j
σ2j > 0

(11)

forM0 =MX
0 orM0 =MR

0 .

Denote by ϕ∗n(α) = 1[|tβ| > cvq(α)] the Rrn 7→ {0, 1} test of asymptotic size α ≤ 0.05
that rejects for large values of |tβ| as defined in (6), and note that, by scale invariance,
tβ can also be computed from the observations {(β̂j − β0)/(β̂ − β0)}qj=1. As discussed
in Section 3.1, the test ϕ∗n(α) satisfies (11) for M0 = MX

0 as long as α ≤ 0.05, and

scale invariance implies that (11) also holds forM0 =MR
0 . What is more, for any data

generating process satisfying (10) under the alternative with μ 6= 0, i.e. for anym ∈MR
1 or

m ∈MX
1 , ϕ

∗
n(α) has the same local power limn→∞

R
ϕ∗n(α)dFn(m,μ, {σ2j}qj=1) for μ 6= 0 as

the small sample t−test in the "limiting problem" with {Xj}qj=1 (or {Rj}qj=1) observed. An
asymptotic efficiency claim about the t−statistic approach now amounts to the statement
that no other test ϕn satisfying (11) has higher local asymptotic power. The following

Theorem, which follows straightforwardly from the general results in Müller (2007a) and

Theorem 2 above, provides such a statement for the case of equal asymptotic variances.

Theorem 3 (i) For any test ϕn that satisfies (11) for M0 = MR
0 and α ≤ 0.083,

lim supn→∞
R
ϕndFn(m,μ, {σ2}qj=1) ≤ limn→∞

R
ϕ∗n(α)dFn(m,μ, {σ2}qj=1) for all μ 6= 0

and m ∈MR
1 .

(ii) Suppose there exists a group of transformations Gn(c) of Yn that induces

the transformations {β̂j − β}qj=1 → {c(β̂j − β)}qj=1 for c 6= 0. For any test ϕn

that is invariant to Gn and that satisfies (11) for M0 = MX
0 and α ≤ 0.083,

lim supn→∞
R
ϕndFn(m,μ, {σ2}qj=1) ≤ limn→∞

R
ϕ∗n(α)dFn(m,μ, {σ2}qj=1) for all μ 6= 0

and m ∈MX
1 .

Part (i) of Theorem 3 shows the t−statistic approach to be the asymptotically most
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powerful against the benchmark alternative of equal asymptotic variances among all tests

that provide asymptotically valid inference under the regularity condition (10). Part (ii)

contains the same claim under the slightly more natural condition (9) when attention is

restricted to tests that are appropriately invariant. For example, in a regression context,

an adequate underlying group of transformations is the multiplication of the dependent

variable by c. Also, the analogous asymptotic efficiency statements hold for one-sided tests

based on tβ of asymptotic level smaller than 4.1%.

Note that this asymptotic optimality of the t−statistic approach holds for all models
in MX

1 and MR
1 , that is whenever (9) and (10) holds with μ 6= 0. In other words, for

any test that has higher asymptotic power for some data generating process for which (9)

and (10) holds with μ 6= 0 and equal asymptotic variances, there exists a data generating
process satisfying (9) and (10) with μ = 0 for which the test has asymptotic rejection

probability larger than α.

In particular, this implies that it is not possible to use data dependent methods to

determine an appropriate q: Suppose one is conservatively only willing to assume (10) to

hold for some small q = q0, but the actual data is much more regular in the sense that

(10) also holds for q = 2q0, with each group divided into two subgroups. Then any data

dependent method that leads to higher asymptotic local power for this more regular data

necessarily lacks robustness in the sense that there exists some data generating process for

which (10) holds with q = q0, and this method overrejects asymptotically. Thus, with (10)

viewed as a regularity condition on the underlying large data set, the t−statistic approach
efficiently exploits the available information, with highest possible power in the benchmark

case of equal asymptotic variances.

If maximizing power against this benchmark alternative is obviously inappropriate

because the asymptotic variances are (at least approximately) known and very different,

then it might be preferable to base inference on the analogue of the weighted least squares

t−statistic t̃ discussed at the end of Section 2 above.

3.3 Size Control under Dependence

Tests of level 5% or lower based on tβ are asymptotically valid whenever (5) holds. As

usual, when applying this result in small samples, one will incur an approximation error, as
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the sampling distribution of {β̂j}qj=1 will not be exactly that of a sequence of independent
normals with commonmean β. In particular, depending on the applications, the estimators

from different groups β̂j might not be exactly independent. We now briefly investigate

what kind of correlations are necessary to grossly distort the size of tests based on tβ,

while maintaining the assumption of multivariate Gaussianity.

Specifically, we consider two correlation structures for {β̂j}qj=1: (i) β̂j are a strictly
stationary autoregressive process of order one (AR(1)), i.e. the correlation between β̂i and

β̂j is ρ
|i−j|; (ii) {β̂j}qj=1 has the correlation structure of a random effects model, i.e. the

correlation between β̂i and β̂j is ρ for i 6= j. For both cases, we consider the two types

of variance heterogeneity discussed above, with either two equal-sized identical variance

groups of relative variance a2, or all observations of equal variance except for one of relative

variance a2. Figure 2 depicts the effective size of a 5% level two-sided t−tests under these
four scenarios. As might be expected, negative ρ lead to underrejections throughout.

More interestingly, t−tests for q small are somewhat robust against correlations in the
underlying observations. This effect becomes especially pronounced if combined with

strong heterogeneity in the variances: with a = 5, ρ needs to be larger than 0.4 before

effective size of a t−test based on q = 4 observations exceeds the nominal level in both the
AR(1) and the random effects model for both types of variance heterogeneity. But even in

the case of equal variances, the size of a test based on q = 4 observations exceeds 7.5% only

when ρ is larger than 0.18 in the AR(1) model. So while (5) is the essential assumption of

the approach suggested here, inference based on tβ continues to have reasonable properties

as long as the dependence in {β̂j}qj=1 is weak, especially when q is small.

3.4 Comparison with Inference under Known Variance

We now turn to a discussion of the relative performance of this robust approach and

inference based on the full sample estimator β̂ with σ2 known. When (5) summarizes

the amount of regularity that one is willing to impose, then this is a purely theoretical

exercise. On the other hand, one might be willing to consider stronger assumptions that

enable consistent estimation of σ2, and it is interesting to explore the relative gain in

power.

With σ̂2
p→ σ2, the standard approach to inference is, of course, to reject when |zβ|
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Figure 2: Effective rejection probabilities of 5% level t−statistics under correlation
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exceeds the critical value for a standard normal, where zβ is given by

zβ =
√
n
β̂ − β0

σ̂
=
√
n
β̂ − β0

σ
+ op(1) (12)

under the null and local alternatives. In this case, a comparison of the asymptotic power

of a test based on tβ with the asymptotic power of a test based on zβ approximates the

efficiency cost of the higher robustness of inference based on tβ.

To investigate this issue, we impose more structure on the econometric model. Specifi-

cally, suppose the model is in the class of exactly identified GeneralizedMethod of Moments

(GMM) models (cf. Hansen (1982)) with moment condition E[g(θ, yi)] = 0, where g is a

known k× 1 vector valued function, θ is a k× 1 vector of parameters and yi, i = 1, · · · , n,
are possibly vector-valued observations. Without loss of generality, we assume that the

first element of θ is the parameter of interest β, so that the last k − 1 elements of θ are
nuisance parameters. Denote by Gj the set of indices of group j observations, such that yi
is in group j if and only if i ∈ Gj. Assume that the GMM estimator θ̂j based on group j

observations satisfies
√
n(θ̂j − θ) = Γ−1j Qj + op(1)

where n−1
P

i∈Gj
∂g(a,yi)

∂a
|a=θ̂j

p→ Γj (of full rank for all j), and Qj = n−1/2
P

i∈Gj g(θ, yi)⇒
N (0,Ωj). In addition, in analogy to (5), we assume the GMM group estimators to be as-

ymptotically independent, which requires (Q0
1, · · · , Q0

q)⇒ N (0,diag(Ω1, · · · ,Ωq)). Under

these assumption, the simple average of the q group estimators θ̂ = q−1
Pq

j=1 θ̂j satisfies

√
n(θ̂ − θ) = q−1

qX
j=1

Γ−1j Qj + op(1)⇒ N (0, Σ̄q), (13)

where Σ̄q = q−2
Pq

j=1 Γ
−1
j Ωj(Γ

0
j)
−1. In contrast, the full sample GMM estimator θ̂ which

solves n−1
Pn

i=1 g(θ̂, yi)
0g(θ̂, yi) = 0, satisfies under the same assumptions

√
n(θ̂ − θ) =

Ã
qX

j=1

Γj

!−1 qX
j=1

Qj + op(1)⇒ N (0,Σq) (14)

where Σq =
³Pq

j=1 Γj
´−1 ³Pq

j=1Ωj

´³Pq
j=1 Γ

0
j

´−1
. In general, this full sample GMM

estimator is not efficient: with heterogeneous groups, it would be more efficient to compute
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the optimal GMM estimator of the q conditions E[g(θ, yi)] = 0 for i ∈ Gj, j = 1, · · · , q.
But this efficient full sample estimator requires the consistent estimation of the optimal

weighting matrix, which involves Ωj, j = 1, · · · , q. This is unlikely to be feasible or

appropriate in applications with pronounced correlations and heterogeneity, so that the

relevant comparison for θ̂ is with θ̂ as characterized in (14).

Comparing Σ̄q with Σq, we find that while
√
n-consistent and asymptotically Gaussian,

the estimators θ̂ and θ̂ (and thus β̂ and β̂) are not asymptotically equivalent. The asymp-

totic power of tests based on tβ and zβ thus not only differ through differences in the

denominator, but also through their numerator. The relationship between Σ̄q and Σq is

summarized in the following Theorem, whose proof is given in the appendix.

Theorem 4 Let Qk be the set of full rank k× k matrices, and let Pk ⊂ Qk denote the set

of symmetric and positive definite k × k matrices. For any q ≥ 2:
(i) Let ι be the k × 1 vector with 1 in the first row and zeros elsewhere. Then

inf{Γj}qj=1∈Q
q
1,{Ωj}

q
j=1∈P

q
1
Σ̄q/Σq = 0,

inf
{Γj}qj=1∈P

q
k ,{Ωj}

q
j=1∈P

q
k

ι0Σqι

ι0Σ̄qι
= 0 and inf

{Γj}qj=1∈P
q
k ,{Ωj}

q
j=1∈P

q
k

ι0Σ̄qι

ι0Σqι
=

(
1/q2 if k = 1

0 if k ≥ 2
.

(ii) For any sequence {Γj}qj=1 ∈ Q
q
k there exists {Ω̄j}qj=1 ∈ P

q
k so that Σq − Σ̄q is

positive semidefinite for {Ωj}qj=1 = {Ω̄j}qj=1, and for any sequence {Γj}
q
j=1 ∈ P

q
k there

exists {Ωj}qj=1 ∈ P
q
k so that Σq − Σ̄q is negative semidefinite for {Ωj}qj=1 = {Ωj}qj=1.

(iii) If Γj = Γ for j = 1, · · · , q, then Σ̄q = Σq for all {Ωj}qj=1.

Part (i) of Theorem 4 shows that very little can be said in general about the relative

magnitudes of the asymptotic variances of β̂ and β̂. Only for k = 1 and Γj restricted

to positive numbers there exists a bound on the relative asymptotic variances, and this

bound is so weak that even for q as small as q = 4, one can construct an example where

the local asymptotic power of a two-sided 5% level test based on |tβ| greatly exceeds the
local asymptotic power of a test based on |zβ| for almost all alternatives, despite the much
larger critical value for |tβ| (which is equal to 3.18 for q = 4 compared to 1.96 for |zβ|).
What is more, as shown in part (ii), it is not possible to determine whether θ̂ is more
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efficient than θ̂ without knowledge of {Ωj}qj=1, and vice versa in the important special case
where Γj are symmetric and positive definite.9

When Γj = Γ for all j, however, the two estimators become asymptotically equivalent.

This special case naturally arises when the groups have an equal number of observations

n/q, and the average of the derivative of the moment condition is homogenous across

groups. One important set-up with this feature is the case of underlying i.i.d. observations.

With Γj = Γ,
√
n(θ̂−θ) = √n(θ̂−θ)+op(1) and β̂ and β̂ are asymptotically equivalent (up

to order
√
n) under the null and local alternatives. There is thus no asymptotic efficiency

cost for basing inference about β on β̂ associated with the re-estimation of the last k − 1
elements of θ in each of the q groups. The asymptotic local power of tests based on tβ and

zβ simply reduces to the small sample power of the t−statistic (2) as discussed in Section
2 and the z−statistic z = √qX̄/σ̄q in the hypothesis test (1), where σ2j is the (1,1) element

of Γ−1ΩjΓ
−1 and σ̄2q = q−1

Pq
j=1 σ

2
j . Figure 3 depicts the power of such 5% level tests for

various q and the two scenarios for the variances considered in Figures 1 and 2 above. The

scale of the variances is normalized to ensure σ̄2q = 1, and the magnitude of the alternative

μ is the value on the abscissa divided by
√
q, so that the power of the z−statistic is the

same for all q.

When all variances are identical (a = 1), the differences in power between the

t−statistic and z−statistic are substantial for small q, but become quite small for moder-
ate q: The largest difference in power is 32 percentage points for q = 4, is 13 for q = 8 and

is 5.8 for q = 16. In both scenarios and all considered values of a 6= 1, the maximal differ-
ence in power between the z−statistic and t−statistic is smaller than this equal variance
benchmark, despite the fact that the t−statistic underrejects under the null hypothesis
when variances are unequal. When Γj = Γ for all j, the loss in local asymptotic power of

inference based on tβ compared to zβ is thus approximately bounded above by the largest

loss of power of a small sample t−statistic over the z−statistic in an i.i.d. Gaussian set-
up. Interestingly, for very unequal variances with a = 5, the t−statistic is sometimes even
more powerful than the z−statistic. This is possible because the z−statistic is not optimal
in the case of unequal variances. Intuitively, for small realizations of the high variance

9There exist {Γj}qj=1 /∈ Pq
k that make θ̂ the more efficient estimator for all possible values of {Ωj}

q
j=1;

for instance, for k = 1 and q = 2, let Γ1 = 1 and Γ2 = −1/2.
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Figure 3: Power of 5% level t−statistics and z-statistic
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observation, s2X is much smaller than σ̄2q, and the t−statistic exceeds the (larger) critical
value more often under moderate alternatives.

To sum up, in an exactly identified GMM framework, tests based on tβ and zβ compare

as follows: Both tests are consistent and have power against the same local alternatives.

Without additional assumptions on Γj–the sample average of the derivative of the moment

condition in group j–little can be said about their local asymptotic power, as either

procedure may be the more powerful one, depending on the values of Ωj, the group j

asymptotic covariance. In the important special case where Γj = Γ for all j, the largest

gain in power of inference based on 5% level two-sided zβ over tβ is typically no larger than

the largest difference in power between a small sample z−statistic over a t−statistic for
i.i.d. Gaussian observations. By implication, as soon as q is moderately large (say, q = 16)

there exist only modest gains in terms of local asymptotic power (less than 6 percentage

points for 5% level tests) of efforts to consistently estimate the asymptotic variance σ2.

3.5 A Simple Test of Potentially Consistent Variance Estimators

In many applications, there will be uncertainty whether the additional assumptions re-

quired for consistent variance estimation hold in the data at hand. We now discuss a

simple test whether such assumptions are rejected by the data, maintaining throughout

that (5) holds.

Typically, assumptions that allow for consistent estimation of σ2 also allow for con-

sistent estimation of σ2j , j = 1, · · · , q, in (5). For example, under the assumption of no
intra-group correlation, one can consistently estimate σ2j by applying the usual White

(1980) formula to the observations of each group. Denote by σ̂2j , j = 1, · · · , q, a set of
such estimators. If indeed σ̂2j

p→ σ2, then under (5), we have the approximately Gaussian

least squares regression

√
n
β̂j
σ̂j
=
√
n
β

σ̂j
+ εj, εj ⇒ i.i.d. N (0, 1), j = 1, · · · , q, (15)

so that the sum of squared residuals
Pq

j=1 ε̂
2
j is approximately distributed χ2q−1. If, in

contrast, σ̂2j systematically underestimates σ
2
j , say because of some ignored positive cor-

relation in the data, then
Pq

j=1 ε̂
2
j tends to be larger. A simple test whether the data is
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consistent with the assumptions required to obtain consistent estimators of {σ2j}qj=1 (and
thus σ2) is therefore to use

Pq
j=1 ε̂

2
j as a test statistic, which is asymptotically distributed

χ2q−1under the null hypothesis. If such a test rejects, one might abandon the attempt of

consistently estimating σ2 and instead rely on the t−statistic approach to inference based
on (5).

4 Applications

We now discuss applications of the t−statistic approach, and provide some Monte Carlo
evidence of its performance compared to alternative approaches. Specifically, we con-

sider time series data, panel data, data where observations are categorized in clusters and

spatially correlated data. The Monte Carlo evidence focusses on inference about OLS lin-

ear regression coefficients. This is for convenience and comparability to other simulation

studies in the literature, since the t−statistic approach is also applicable to instrumen-
tal variable regressions and nonlinear models, as noted above. Also, we mostly consider

data generating processes where the variances of the β̂j are similar. This is again to en-

sure comparability with other simulation studies10, and it also represents the case where

the theoretical results above predict size control to be most difficult for the t−statistic
approach.

4.1 Time Series Data

With observations ordered in time, the default assumption driving most of time series

inference is that the further apart the observations, the weaker their potential correla-

tion. For the t−statistic approach, in absence of more specific information regarding the
potential time series correlation, this suggests dividing the sample of size T into q (ap-

proximately) equal sized groups of consecutive observations: the observation indexed by t,

t = 1, · · · , T , is element of group j if t ∈ Gj = {t : (j−1)T/q < t ≤ jT/q} for j = 1, · · · , q.
The smaller q, the less approximate independence in time is imposed.

10Given the theoretical results provided in Theorem 4 above, it is quite evident that under asymptotic

heterogeneity, one can construct examples where β̂ is a vastly inferior estimator than β̂, and vice versa.
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Under a wide range of assumptions on the underlying model and observations, exactly

identified GMM with k dimensional moment condition E[g(θ, yt)] = 0 satisfies

sup
0≤s≤1

||T−1
bsT cX
t=1

∂g(a, yt)

∂a
|a=θ−

Z s

0

Γ(λ)dλ|| p→ 0 and T−1/2
b·T cX
t=1

g(θ, yt)⇒
Z ·

0

h(λ)dW (λ)

(16)

for some nonstochastic, positive definite k × k matrix function Γ(·) and nonstochastic
nonzero k×1 function h(·). For the groups chosen as above, we thus have by the Continuous
Mapping Theorem

√
T

⎛⎜⎜⎜⎜⎜⎝
θ̂1 − θ

θ̂2 − θ
...

θ̂q − θ

⎞⎟⎟⎟⎟⎟⎠⇒
⎛⎜⎜⎜⎜⎜⎝

(
R 1/q
0

Γ(λ)dλ)−1
R 1/q
0

h(λ)dW (λ)

(
R 2/q
1/q

Γ(λ)dλ)−1
R 2/q
1/q

h(λ)dW (λ)
...

(
R 1
(q−1)/q Γ(λ)dλ)

−1 R 1
(q−1)/q h(λ)dW (λ)

⎞⎟⎟⎟⎟⎟⎠
so that {

√
T (β̂j −β)}qj=1 are asymptotically independent and Gaussian. Therefore, when-

ever (16) holds, t−statistic based inference is asymptotically valid for any q ≥ 2. The

t−statistic approach can hence allow for asymptotically time varying information (non-
constant Γ(·)) and pronounced stochastic volatility (nonconstant h(·)). In contrast, the
approach of Kiefer and Vogelsang (2002, 2005) requires Γ(·) and h(·) to be constant.
There is substantial empirical evidence for persistent instabilities in the second moment of

macroeconomic and financial time series: see, for instance, Bollerslev, Engle, and Nelson

(1994), Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Andersen, Boller-

slev, Christoffersen, and Diebold (2007), and Müller and Watson (2007). The additional

robustness of the t−statistic approach is thus arguably of practical relevance.
In fact, the t−statistic based approach suggested here is, to the best knowledge of the

authors, the only known way of conducting asymptotically valid inference whenever (16)

holds, as least under double-array asymptotics: Müller (2007b) demonstrates that in the

scalar location model, for any equivariant variance estimator that is consistent for the

variance of Gaussian white noise, there exists a double array that satisfies a functional

central limit theorem which induces the “consistent” variance estimator to converge in

probability to an arbitrary positive value. Since all usual consistent long-run variance

estimators are both scale equivariant and consistent for the variance of Gaussian white
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noise, none of these estimators yields generally valid inference under (16). The general

validity of the t−statistic approach under (16) is thus a further analytical reflection of its
increased robustness, beyond the results of Sections 3.1 and 3.2.

Table 1 reports small sample properties of various approaches to inference. The small

sample experiment is the one considered in Andrews (1991), Andrews and Monahan (1992)

and Kiefer, Vogelsang, and Bunzel (2000) and concerns inference in a linear regression with

5 regressors. In addition to t−statistic based inference described above with q = 2, 4, 8

and 16 and groups Gj = {t : (j − 1)T/q < t ≤ jT/q}, we include in our study the
approach developed by Kiefer and Vogelsang (2005) and usual inference (as in (12)) based

on two standard consistent long-run variance estimators. Specifically, we follow Kiefer and

Vogelsang (2005) and focus on the quadratic spectral kernel estimator ω̂2QS(b) and Bartlett

kernel estimator ω̂2BT (b) with bandwidths equal to a fixed fraction b ≤ 1 of the sample size,
with asymptotic critical values as provided by Kiefer and Vogelsang (2005) in their Table

1. For standard inference based on consistent long-run variance estimators, we include the

quadratic spectral estimator ω̂2QA with an automatic bandwidth selection using an AR(1)

model for the bandwidth determination as suggested by Andrews (1991), and an AR(1)

prewhitened long-run variance estimator ω̂2PW with a second stage automatic bandwidth

quadratic spectral kernel estimator as described in Andrews and Monahan (1992), where

the critical values are those from a standard normal distribution.

As can be seen from Table 1, the t−statistic approach is remarkably successful at con-
trolling size, the only instance of a moderate size distortion occurs in the AR(1) model

with ρ ≥ 0.9 and q ≥ 8. This performance may be understood by observing that strong
autocorrelations (which induce overrejection) co-occur with strong heterogeneity in the

group design matrices (which induce underrejection) for the considered data generating

process. In contrast, the tests based on the consistent estimators and the fixed-b asymp-

totic approach lead to much more severe overrejections.

For the computations of size adjusted power, the magnitude of the alternative was

chosen to highlight differences. For moderate degrees of dependence, tests based on ω̂2QA

and ω̂2PW , as well as on ω̂2QS(b) and ω̂2BT (b) with b small have larger size corrected power

than the t−statistic, with especially large differences for q small. On the other hand,
the t−statistic approach can be substantially more powerful than any of the other tests

25



Table 1: Small Sample Results in a Time Series Regression with T = 128

t−statistic (q) ω̂2QA ω̂2PW ω̂2QS(b) ω̂2BT (b)

2 4 8 16 0.05 0.3 1 0.05 0.3 1

ρ Size, AR(1)

-0.5 4.7 4.7 5.0 5.1 10.1 9.4 8.5 6.9 6.1 9.0 7.7 7.5

0 4.9 4.7 4.6 4.8 7.1 8.1 7.3 5.5 5.2 6.7 6.0 6.2

0.5 4.8 4.6 4.6 4.9 10.4 9.9 9.0 6.0 6.1 9.4 7.5 7.0

0.9 4.9 5.1 6.1 7.8 28.9 25.4 26.4 15.2 11.5 29.9 20.5 18.8

0.95 5.1 5.3 7.0 10.2 37.8 32.4 36.3 21.2 14.7 40.3 28.2 25.5

θ Size, MA(1)

-0.5 4.5 5.0 4.8 4.9 8.4 8.3 7.7 6.0 5.7 7.6 6.9 6.8

0.5 5.0 5.1 5.2 5.4 8.9 8.6 7.9 6.2 6.1 8.1 6.9 6.6

0.9 5.0 4.8 5.0 5.1 9.1 8.3 8.1 6.4 6.1 8.3 6.9 6.8

0.95 4.9 4.8 5.0 5.1 9.1 8.3 8.1 6.4 6.0 8.4 7.0 6.8

ρ Size Adjusted Power, AR(1)

-0.5 14.6 37.3 54.0 56.1 56.5 55.2 55.6 37.3 24.3 56.1 46.4 42.3

0 15.1 38.4 53.7 50.0 62.7 60.6 59.0 41.3 27.2 60.7 51.9 47.2

0.5 14.5 38.2 55.9 54.3 57.0 56.2 54.4 40.3 24.9 56.0 48.4 44.2

0.9 17.2 56.7 77.6 78.3 57.5 54.6 58.3 42.7 27.7 58.7 51.4 46.6

0.95 22.1 72.0 88.5 90.6 70.0 65.5 71.5 56.0 35.1 72.0 63.3 57.5

θ Size Adjusted Power, MA(1)

-0.5 17.6 45.2 64.9 62.4 71.4 70.2 68.9 49.0 31.6 70.5 59.7 53.6

0.5 16.5 44.5 63.3 64.8 69.3 67.2 67.1 47.1 28.0 68.5 57.7 53.2

0.9 15.5 42.8 60.4 63.3 65.0 63.6 63.1 43.3 26.8 64.1 53.6 49.4

0.95 15.7 42.8 60.4 63.3 64.8 63.6 63.0 43.3 27.0 64.0 53.4 49.1

Notes: The entries are rejection probabilities of nominal 5% level two-sided t−tests about
the coefficient β of the first element of Xt in the linear regression yt = X 0

tθ + ut, t =

1, · · · , T , where Xt = (x
0
t, 1)

0, xt = (T−1
PT

s=1 x̄sx̄
0
s)
−1/2x̄t, x̄t = x̃t−T−1

PT
s=1 x̃s and the

elements of x̃t are four independent draws from a mean-zero, Gaussian, stationary AR(1)

and MA(1) process of unit variance and common coefficients ρ and θ, respectively. The

disturbances ut are an independent draw from the same model as the (pretransformed)

regressors, multiplied by the first element of Xt. Under the alternative, the difference

between the true and hypothesized coefficient of interest was chosen as 4/
p
T (1− ρ2)

in the AR(1) model and as 5/
√
T in the MA(1) model. See text for description of test

statistics. Based on 10,000 replications.
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in highly dependent scenarios. Simulations for other forms of heteroskedasticity yield

qualitatively similar results and are not reported for brevity.

The argument for the asymptotic normality of the group estimators β̂j, j = 1, · · · , q,
can fail if the underlying random variables are too heavy-tailed. For α ∈ (0, 2], denote
by D(α) the domain of attraction of a strictly α-stable distribution. Then suitably scaled

averages of i.i.d. random variables in D(α) converge in distribution to a strictly α-stable

law, which coincides with the Gaussian law only for α = 2. Heavy-tailed distributions

have been used to model financial data (see, for instance, Loretan and Phillips (1994) and

Rachev, Menn, and Fabozzi (2005) for a review and additional references), catastrophe

risks and economic losses from natural disasters (see Ibragimov, Jaffee, and Walden (2006)

and references therein).

Inference with heavy-tailed random variables is complicated by the fact that the rate

of convergence and the limiting distribution depends on the unknown tail index α. These

difficulties are compounded in the presence of additional time series dependence. To fix

ideas, consider the problem of conducting inference on β in the scalar linear process

yt = β +
∞X

j=−∞
ψjSt−j,

∞X
j=−∞

|ψj| <∞, St ∼ i.i.d. in D(α) (17)

so that β = E[yt] when α > 1.

McElroy and Politis (2002) stress that few options are available for conducting infer-

ence on β in this model. They show that with α ∈ (1, 2], the usual t−statistic in yt

converges in distribution under the null hypothesis, and prove that under the additional

assumption of yt being strong mixing, subsampling can be employed to approximate the

limiting distribution. Also see Kokoszka and Wolf (2004) for extensions of this approach

to GARCH-type time series models.

The t−statistic approach outlined in Section 3.1 above provides an alternative, at least
when St in (17) are in the domain of attraction of a symmetric stable law, which is weaker

than the assumption of a symmetric distribution of St: For q ≥ 2, let Gj = {t : (j−1)T/q <
t ≤ jT/q} as before, and define β̂j =

P
t∈Gj yt/

P
t∈Gj 1. Lemma 1 of Avram and Taqqu

(1992) about the joint convergence of the finite dimensional distributions of the partial

sum process mTT
−1Pb·T c

t=1 (yt − β) under (17) and α ∈ (0, 2] for some sequence mT imply

the convergence in distribution of {mT (β̂j − β)}qj=1 to independent α−stable symmetric
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random variables. Since symmetric stable distributions can be written as scale mixtures

of normals, (7) holds, and the t−statistic approach is valid.
Table 2 reports the small sample performance of the subsampling and t−statistic ap-

proach in the same Monte Carlo design as considered in McElroy and Politis (2002).11

As McElroy and Politis (2002), we find that the size control of the subsampling approach

strongly depends on the choice of the subsample length b, on which there is little theoret-

ical guidance. In contrast, the t−statistic based tests are mostly moderately undersized,
with pronounced distortions only in the case of the MA process and a sample size of

T = 100. We report non-size adjusted power because the t−statistic approach has asymp-
totic rejection probability under the null hypothesis below the nominal level in this data

generating process, with potentially adverse effects on power. For the considered sample

sizes, however, the t−statistic approach is typically more powerful than subsampling when
both control size, at least for q ≥ 8.

4.2 Panel Data

Many empirical studies in economics are based on observing N individuals repeatedly

over T time periods, and correlations are possible in either (or both) dimensions. In

applications, it is typically assumed that, possibly after the inclusion of fixed effects, one

of the dimension is uncorrelated, and inference is based on consistent standard errors

that allows for arbitrary correlation in the other dimension (Arellano (1987) and Rogers

(1993)). The asymptotic validity of these procedures stems from an application of a law

of large numbers across the uncorrelated dimension.12 So if the uncorrelated dimension is

small, one would expect these procedures to have poor finite sample properties, and our

approach to inference is potentially attractive.

To fix ideas, consider a linear regression for the case where N is small and T is large

yi,t = X 0
i,tθ + ui,t, i = 1, · · · , N , t = 1, · · · , T (18)

11We were unable to replicate some of the Monte Carlo results reported in McElroy and Politis (2002).

The differences do not alter any of the qualitative conclusions of McElroy and Politis (2002), however.
12Interestingly, Hansen (2007) shows that under weak regularity conditions, this remains true even if the

dependent dimension is allowed to increase with the independent dimension in the underlying asymptotics.
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Table 2: Small Sample Results in a Time Series Location Model with Symmetric α-Stable

Disturbances

t−statistic (q) subsampled t−statistic (b)
2 4 8 16 2 4 8 16

DGP α T β Size

MA 1.2 100 0 3.8 3.4 4.7 9.8 0.0 0.5 3.4 18.7

MA 1.2 1000 0 3.6 3.1 2.9 3.1 2.0 3.3 7.1 16.5

MA 1.8 100 0 4.9 5.0 6.7 12.1 0.0 0.1 1.6 9.4

MA 1.8 1000 0 4.9 4.7 5.0 5.0 0.1 0.1 0.2 0.9

AR 1.2 100 0 3.9 3.2 3.7 5.4 0.2 7.0 18.6 32.6

AR 1.2 1000 0 4.1 3.0 2.5 3.0 2.9 10.5 20.5 26.3

AR 1.8 100 0 4.7 4.4 5.3 6.9 0.0 1.1 6.5 14.9

AR 1.8 1000 0 4.7 4.6 4.8 4.8 0.1 0.3 1.9 4.8

DGP α T β Non-Size Adjusted Power

MA 1.2 100 1.0 10.4 30.1 45.3 56.4 0.6 10.5 28.6 49.4

MA 1.2 1000 1.0 14.2 45.7 58.9 63.8 2.5 19.0 44.1 59.1

MA 1.8 100 0.4 14.2 38.4 58.9 73.5 0.0 2.9 20.6 49.2

MA 1.8 1000 0.2 19.0 56.8 76.0 82.0 0.1 0.1 15.8 51.1

AR 1.2 100 2.0 10.8 29.2 42.5 50.5 3.5 36.2 51.3 60.2

AR 1.2 1000 2.0 14.9 45.0 58.3 63.1 5.2 52.3 65.7 69.5

AR 1.8 100 0.8 14.2 37.7 55.4 65.6 0.1 24.1 51.2 66.4

AR 1.8 1000 0.4 18.7 57.2 75.6 81.3 0.1 34.6 70.0 78.6

Notes: Rejection probabilities of nominal 5% level two-sided tests about β in the

model yt = β + ut, t = 1, · · · , T , where ut = 0.5ut−1 + St and u0 = 0 (AR)

and ut =
P10

j=0 ψjSt−j with {ψj}10j=0 = {.03, .05, .07, .1, .15, .2, .15, .1, .07, .05, .03}
(MA), and St are i.i.d. mean zero α-symmetric stable distributed. The subsam-

pled t−statistic rejects if the full sample OLS t−statistic falls outside the 2.5%
and 97.5% quantiles of the empirical distribution function of OLS t−statistics
computed on all T − b + 1 consecutive subsamples of length b, as described in

detail in McElroy and Politis (2002). Based on 10,000 replications.
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where {Xi,t, ui,t}Tt=1 are independent across i and E[Xi,tui,t] = 0 for all i, t. Suppose that

under T →∞ asymptotics withN fixed, T−1
PT

t=1Xi,tX
0
i,t

p→ Γi and T−1/2
PT

t=1Xi,tui,t ⇒
N (0,Ωi) for all i for some full rank matrices Γi and Ωi. These assumptions are enough to

guarantee that the OLS coefficient estimators β̂i using data from individual i = 1, · · · , N
only are asymptotically independent and Gaussian, so the t−statistic approach with q = N

groups is valid. Hansen (2007) derives a closely related result under “asymptotic homo-

geneity across i”, that is if Γi = Γ and Ωi = Ω for all i: in that case, the standard

t−statistic for β̂ based on the usual Rogers (1993) standard errors converges in distri-
bution to a t−distributed random variable with N − 1 degrees of freedom, scaled byp
N/(N − 1), under the null hypothesis. In fact, it is not hard to see that under asymp-

totic homogeneity across i, β̂ and sβ̂ in (6) of our approach are first order asymptotically

equivalent to β̂ and the appropriately scaled Rogers (1993) standard error under the null

and local alternatives, so both approaches have the same asymptotic local power. The

advantage of our approach is that it does not require asymptotic homogeneity to yield

valid inference.

Table 3 provides some small sample evidence for the performance of these two ap-

proaches, with the same data generating process as considered by Kézdi (2004), with

an AR(1) in both the regressor and the disturbances. Since β̂i, conditionally on {Xi,t},
is Gaussian with mean β, the t−statistic approach is exactly small sample conservative
for this DGP. Hansen’s (2007) asymptotic result is formally applicable for |ρx| < 1 and

|ρu| < 1, as this DGP then is asymptotically homogeneous in the sense defined above.

With a unit root in the regressors, however, T−2
PT

t=1Xi,tX
0
i,t does not converge to the

same limit across i, so that despite the i.i.d. sampling across i, asymptotic homogeneity

fails. These asymptotic considerations successfully explain the size results in Table 3. The

t−statistic approach has higher size adjusted power for heteroskedastic disturbances, but
this is not true under homoskedasticity.

For panel applications in finance with individuals that are firms, it is often the cross-

section dimension for which uncorrelatedness is an unattractive assumption (see Petersen

(2005) for an overview of popular standard error corrections in finance). As noted in the

introduction, if one is willing to assume that there is no time series correlation, which is

empirically plausible at least for stock returns, then our approach with time periods as
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Table 3: Small Sample Results in a Panel withN = 10, T = 50 and Time Series Correlation
homoskedastic heteroskedastic

ρx 0 0.5 0.9 0.9 1 0 0.5 0.9 0.9 1

ρu 0 0.5 0.5 0.9 0.5 0 0.5 0.5 0.9 0.5

Size

t−statistic 5.0 4.9 5.3 5.0 4.4 4.6 4.6 4.4 4.0 3.8

clustered 5.2 5.3 6.5 7.2 8.7 4.9 5.5 7.7 7.9 14.7

clustered, FE 5.1 5.1 6.2 6.2 6.8 4.9 5.3 6.4 6.2 8.6

Size Adjusted Power

(β − β0)/
√
nT 2.5 3 8 0.8 12 5 8 8 25 180

t−statistic 58.7 53.9 56.7 39.4 42.5 54.6 64.7 62.0 62.9 73.7

clustered 60.8 55.0 71.5 31.9 83.6 51.9 56.6 49.1 33.6 52.1

clustered, FE 59.7 55.1 60.8 38.3 50.8 52.0 58.2 48.9 46.2 45.1

Notes: The entries are rejection probabilities of nominal 5% level two-sided t−tests about
the coefficient β of xi,t in the linear regression yi,t = X 0

i,tθ + ui,t, i = 1, · · · , N , t =

1, · · · , T , where Xi,t = (xi,t, 1)
0, xi,t = ρxxi,t−1 + εi,t, xi,0 = 0, εi,t ∼ i.i.d. N (0, 1), ui,t =

ρuui,t−1 + ηi,t, ui,0 = 0, where under homoskedasticity, ηi,t ∼ i.i.d. N (0, 1) independent
of {εi,t}, and under heteroskedasticity, ηi,t = (0.5 + 0.5x2i,t)η̃i,t and η̃i,t ∼ i.i.d. N (0, 1)
independent of {εi,t}. The considered tests are the t−statistic approach with groups defined
by individuals (“t−statistic“); OLS coefficient based tests with Rogers (1993) standard
errors (“clustered“); and OLS coefficient based test which includes individual Fixed Effects

and Arellano (1987) standard errors (“clustered, FE“). The critical value for the clustered

test statistic was chosen from the appropriate quantile of a Student−t distribution with
N − 1 degrees of freedom, scaled by

p
N/(N − 1). Based on 10,000 replications.
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groups becomes the so-called Fama-MacBeth approach: Estimate the model of interest

for each time period j cross sectionally to obtain β̂j, and compute the usual t−statistic
for the resulting q = T coefficient estimates. Our results formally justify this approach

for T small and possible heterogeneity in the variances of β̂j. Note that the variances

may be stochastic and dependent even in the limit, as in (7), which would typically arise

when regression errors follow a stochastic volatility model with some common volatility

component.

In corporate finance applications, or with overlapping long-term returns as dependent

variable, one would typically not want to rule out additional dependence in the time

dimension. Under the assumption that the correlation dies out over time, one could try

to non-parametrically estimate the long-run variance of the sequence {β̂j}Tj=1 using, say,
the Newey and West (1987) estimator. However, this will require a long panel (T large) to

yield reasonable inference. Our results suggest an alternative approach: Divide the data in

fewer groups that span several consecutive time periods. For instance, with T = 24 yearly

sampling frequency, one might form 8 groups of 3 year blocks, or, more conservatively, 4

groups of 6 year blocks. If the time series correlation is not too pronounced, then parameter

estimators from different groups will have little correlation, and the t−statistic approach
yields approximately valid inference.

We investigate the empirical performance of this approach for two data generating

processes considered by Thompson (2006) for N = 50 and T = 25, both of which generate

some dependence in both dimensions. As noted by Thompson (2006), an approach that

clusters in both dimensions (also see Cameron, Gelbach, and Miller (2006)) has poor small

sample properties for these values ofN and T , even in absence of any time series correlation

(ρ = 0). In contrast, the t−statistic approach has reasonable size control as long as the
time series dependence is not extreme (ρ = 0.9), and has favorable size control properties

compared to parametric or non-parametric corrections to the Fama-MacBeth approach.

Unreported results show that this remains true also under the inclusion of additional fixed

effects in either or both dimensions. As can be seen from Table 4, these advantages in size

control of the t−statistic approach come at a certain cost in size adjusted power, though,
especially for q small. The higher power of the Fama-MacBeth approaches when ρ is small

stems from the inherent time fixed effect in that estimator; the other approaches have
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Table 4: Small Sample Results in a Panel with N = 50, T = 25 and Correlation in Both

Dimensions
Individual Persistence Common Persistence

ρ 0 0.5 0.7 0.9 0 0.5 0.7 0.9

Size

t−statistic q = 2 4.9 5.3 5.0 6.0 4.9 5.1 5.3 6.3

t−statistic q = 4 4.9 5.2 5.4 9.8 4.1 5.0 5.3 10.4

t−statistic q = 8 4.6 5.3 6.4 17.1 3.9 4.9 7.1 16.8

Fama-MacBeth with Newey-West 12.6 13.6 19.8 34.8 11.4 12.3 14.2 23.4

Fama-MacBeth with AR(1) corr. 9.6 9.9 13.5 22.5 8.8 9.1 10.4 18.0

cluster by i and t 9.3 8.9 8.8 7.0 10.2 19.0 29.9 49.5

cluster by i and t + common pers. 16.3 16.2 14.9 12.1 17.0 21.3 26.4 38.3

Size Adjusted Power

(β − β0)/
√
nT 7 7 7 7 25 30 30 45

t−statistic q = 2 12.9 13.0 16.2 14.9 20.3 20.9 18.1 20.8

t−statistic q = 4 30.5 35.2 45.5 45.3 58.4 63.5 58.4 60.6

t−statistic q = 8 50.9 57.7 67.6 61.3 59.5 73.2 67.3 68.2

Fama-MacBeth with Newey-West 100 99.5 91.6 58.9 57.3 58.4 47.4 47.1

Fama-MacBeth with AR(1) corr. 100 99.2 88.8 51.4 57.6 60.2 46.7 44.8

cluster by i and t 46.8 55.4 67.6 74.8 86.3 83.4 66.2 70.2

cluster by i and t + common pers. 31.7 39.4 52.7 69.8 69.6 70.0 53.6 60.1

Notes: The entries are rejection probabilities of nominal 5% level two-sided t−tests about
the coefficient β of xi,t in the linear regression yi,t = X 0

i,tθ+ ui,t, i = 1, · · · , N , t = 1, · · · , T ,
where Xi,t = (xi,t, 1)

0. The DGPs correspond to Panels B and C of Thompson (2006), where

under “Individual Persistence”, ui,t = ξt + ηi,t, ηi,t = ρηi,t−1 + εi,t, ηi,0 = 0, ξt and εi,t

are mutually independent and distributed i.i.d. N (0, 1), and under “Common Persistence”
ui,t = hift + εi,t, ft = ρft−1 + ξt, f0 = 0, and the disturbances are mutually independent

and εi,t ∼ i.i.d. N (0, 0.01), hi ∼ i.i.d. N (1, 0.25), ξt ∼ i.i.d. N (0, 1). In both cases, xi,t
is an independent draw of the same distribution as ui,t (with the same hi under common

persistence). The considered tests are: the t−statistic approach with groups Gj = {(i, t) :
(j − 1)T/q < t ≤ jT/q}; Fama-MacBeth standard errors with a Newey West correction
with 5 lags; Fama-MacBeth standard errors multiplied by

p
(1 + ρ̂)/(1− ρ̂), where ρ̂ is the

first order autocorrelation coefficient of β̂j , j = 1, · · · , T (see Fama and French (2002)); and
inference based on clustering in both dimensions as suggested in Thompson (2006), where

in the “+ common pers.”-row, the clustering allows for a persistence common shock with

lag length 2. For all approaches other than the t−statistic, critical values from a standard

normal were employed. Based on 10,000 replications.
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similar size adjusted power when time fixed effects are included (see Petersen (2005) for

similar results on efficiency of alternative estimators).

If a panel is very short and potential autocorrelations are large, then it might be more

appealing to assume some independence in the cross section. For instance, in finance

applications, one might be willing to assume that there is little correlation between firms

of different industries, as in Froot (1989). Under this assumption, one could collect all

firms of the same industry in the same group to obtain as many groups as there are

different industries. If the parameter of interest is a regression coefficient of a regressor

that varies within industry, then one could add time fixed effects in each group to guard

against inter-industry correlation from a yearly common shock that is independent of the

other regressors. Alternatively, one can also combine independence assumptions in both

dimensions by, say, forming twice as many groups as there are industries by splitting each

industry group into two depending on whether t < T/2 or not. The theoretical results

in Section 3.4 suggest that there are substantial gains in power (more than 10% for 5%

level tests) of such an additional independence assumption as long as q ≤ 8. Similar

possibilities of group formation might be attractive for long-run performance evaluations

in finance (see, for instance, Jegadeesh and Karceski (2004) for a discussion of inference

based on consistent variance estimation that could be easily adapted for the t−statistic
approach), and panel analyses with individuals as countries and trade-blocks or continents

as one group dimension.

Recently, Bertrand, Duflo, and Mullainathan (2004) have also stressed the importance

of allowing for time series correlation in panel difference-in-difference applications. This

technique is popular to estimate causal effects, and it is usually implemented by a linear

regression (18) with fixed effects in both dimensions. In a typical application, the indi-

viduals i = 1, · · · , N are U.S. states, and the coefficient of interest β multiplies a binary

regressor that describes some area specific intervention, such as the passage of a law. Don-

ald and Lang (2004) show that if ui,t has an i.i.d. Gaussian random effect structure for

each (potential) pre- and post-intervention area group, then correct inference is obtained

for fixed N by a two stage inference procedure using a Student−t critical value with an
appropriate degrees of freedom correction. See Wooldridge (2003) for further discussion,

and Conley and Taber (2005) for a possible approach when only few states were subject
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to the intervention, but many others were not. With the time fixed effects, it is obviously

not possible to apply the t−statistic approach with groups defined as states. However, by
collecting states into groups defined as larger geographical areas so that at least one of the

states in each group was subject to the intervention, it again becomes possible to obtain

estimators β̂j, j = 1, · · · , q, from each group and to apply the t−statistic approach. This
leads to a loss of degrees of freedom, but it has the advantage of yielding correct inference

when the pre- and post-intervention specific random effects in ui,t are independent, but

not necessarily identically distributed scale mixture of normals. This is a considerable

weakening of the homogeneous Gaussian assumption required for the approach of Donald

and Lang (2004). Also, if larger geographical areas are formed by collecting neighboring

states, the t−statistic approach becomes at least partially robust to moderate spatial cor-
relations. When the number of states in each of these larger areas is not too small (which

for the U.S. then implies a relatively small q), one might appeal to the central limit the-

orem to justify the t−statistic approach to inference when the underlying random effects

cannot be written as scale mixtures of normals.

4.3 Clustered Data

A further potential application of our approach is to draw inferences about a population

based on a two-stage (or multi-stage) sampling design with a small number of indepen-

dently sampled primary sampling units (PSUs). PSUs could be villages in a development

study (see, for instance, Deaton (1997), Chapters 1.4 and 2.2), or a small number of, say,

city blocks in a large metropolitan area. One would typically expect that observations

from the same PSU are more similar than those from different PSUs, which necessitates a

correction of the standard errors. Note that PSUs are independent by sample design, so

with PSUs as groups j = 1, · · · , q, the only additional requirement of our approach is that
the parameter of interest can be estimated by an approximately Gaussian and unbiased

estimator β̂j from each PSU, j = 1, · · · , q. Of course, this will only be possible if the
parameter of interest is identified in each PSU; in a regression context, a coefficient about

regressors that only vary across PSUs cannot be estimated from one PSU only, as long

as the regression contains a constant. In such cases, our approach is still applicable by

collecting more than one PSU in each group.
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As a stylized example, imagine a world where the only spacial correlation between

household characteristics in the population arises through the fact that households in

the same neighborhood are very similar to each other, and villages consist of, say, 30-80

neighborhoods. Consider a two stage sample design with a simple random sample of 400

households within 12 villages as PSUs. Sample means β̂j of household characteristics of

a single PSU are then approximately Gaussian with a mean that is equal to the national

average β, and a variance that is a function of the number of neighborhoods. This variance

is larger than that of a national simple random sample of the same size, so ignoring the

clustering leads to incorrect inference, while our approach is approximately correct. What

is more, our derivations in Section 3.4 above show the t−statistic approach results in a
small loss in power only compared to inference based on the overall sample average with

known variance, regardless whether or not there is indeed this neighborhood-type spatial

correlation in the population.

In some instances, it will be more appropriate to assume that all individuals from the

same PSU are similar–think of the extreme case where all households in the same village

are identical. In this case, there is no equivalent to the averaging over the neighborhoods,

and one cannot appeal to the central limit theorem to argue for the approximation β̂j ∼
N (β, v2j ). This set-up would naturally lead to a random parameter model, where the

household characteristic βj in PSU j is a random draw from the national distribution. In

a slightly more general regression context, this leads to the random coefficient regression

model (cf., for instance, Swamy (1970))

Yi,j = X 0
i,jθj + ui,j = X 0

i,jθ +X 0
i,j(θj − θ) + ui,j

for individual i = 1, · · · , nj in PSU j = 1, · · · , q, E[Xi,juj] = 0 and θj are i.i.d. draws from

some population with mean θ. Thought of as part of the disturbance term, X 0
i,j(θj − θ)

induces intra-PSU correlations. Now under sufficient regularity conditions, θ̂j − θj
p→ 0 as

nj → ∞, and our approach for inference about β (the first element of θ), remains valid
as long as the distribution of βj can be written as a scale mixture of normals. This is

a wide class of distributions, as noted in Section 2 above. If nj is not large enough to

make θ̂j − θj
p→ 0 a good approximation, but instead β̂j|βj ∼ i.i.d. N (βj, v2j ), then the

unconditional distribution of β̂j is given by a convolution of the distribution of βj and
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mean zero normal, which can be written a scale mixture of normals if the distribution of

βj is one, so our approach remains applicable.

The need for clustering might arise in a more subtle way depending on the relationship

between the sampling scheme and the population of interest. For example, suppose we

want to study labor supply based on a large i.i.d. sample from U.S. households, which are

located in, say, 12 different regions. Similar to the example above, assume that each region

consists of, say, 30-80 different metropolitan and rural areas, and that the characteristics

of these areas induce similar behavior of households, so that there are effectively about 500

different types of households. Of course, in a large sample, we will have many observations

from the same area, which are quite similar to each other. Nevertheless, the usual (small)

standard errors, based on the total number of observations, are applicable by definition

of an i.i.d. sample for statements about labor supply in the current U.S. population. But

if the study’s results are to be understood as generic statements about labor supply, then

the relevant population becomes households in all kinds of circumstances, and the i.i.d.

sample from U.S. households is no longer i.i.d. in this larger population. Instead, it makes

sense to think of the 12 regions as independently sampled PSUs of this superpopulation,

and apply our approach with the regions as groups. As pointed out by Moulton (1990),

ignoring this clustering often leads to very different results.

4.4 Spatially Correlated Data

Inference with spatially correlated data is usually justified by a similar reasoning as with

time series observations: more distant observations are less correlated. With enough

assumptions on the rate of decay of correlation as a function of their distance, consistent

parametric and nonparametric variance estimators of spatially correlated data can be

derived–see Case (1991) and Conley (1999). “Distance” here can mean physical distance

between geographical units (country, county, city and so forth), but may also be thought

of as distance in some economic sense. Conley and Topa (2002), for instance, considers

spatial correlation as a function of socioeconomic distance, and Conley and Dupor (2003)

uses metrics based on input-output relations as to measure the distance different sectors

of the U.S. economy.

For the t−statistic approach suggested here, an assumption of correlations decaying
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as a function of distance suggests constructing the q groups out of blocks of neighboring

observations. If the groups are carefully chosen, then under asymptotics where there are

more and more observations in each of the q groups, most observations are sufficiently

far away from the “borders”. The variability of the group estimators is thus dominated

by observations that are essentially uncorrelated with observations from other groups.

Furthermore, the averaging within each group yields asymptotic Gaussianity for each β̂j,

so that under sufficiently strong regularity conditions, the t−statistic based inference is
valid.

We investigate the relative performance of the t−statistic approach and inference based
on consistent variance estimators in a Monte Carlo exercise as follows: We are interested

in conducting inference about the mean β of n = 128 observations which are located on

a rectangular array of unit squares with 8 rows and 16 columns (two checker boards side

by side). The observations are generated such that in the Gaussian case, the correlation

of two observations is given by exp(−φd) for some φ > 0, where d is the Euclidian dis-

tance between the two observations. We also consider disturbances with a mean corrected

chi-squared distribution with one degree of freedom. As can be seen from Table 5, the

t−statistic approach is more successful at controlling size than inference based on the con-
sistent variance estimators. The asymmetry in the error distribution has only a relatively

minor impact on size control. Size corrected power of the t−statistics increases in q, but

is always smaller than the size corrected power of tests based on nonparametric spatial

consistent variance estimators suggested by Conley (1999) with a small bandwidth b ≤ 2,
which includes the OLS variance estimator as a special case.

5 Conclusions

The paper develops a general strategy to deal with inference about a scalar parameter in

data with pronounced correlations of largely unknown form. The key assumption is that

it is possible to partition the data into q groups, such that estimators based on data from

group j, j = 1, · · · , q, are approximately independent and normal, but not necessarily
of equal variance. As long as there are no pronounced common shocks and the group

sizes are not too small, the normality assumption seems rather weak, as the central limit
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Table 5: Small Sample Results in a Location Problem with Spatial Correlation, n = 128
t−statistic (q) ω̂2UA(b) ω̂2WA(b)

2 4 8 16 0 2 4 8 2 4 8

Size, Gaussian Errors

φ =∞ 5.0 5.0 5.1 5.1 5.5 6.2 7.9 13.2 8.1 14.9 19.1

φ = 2 5.1 5.4 5.9 7.5 15.1 11.0 10.4 15.8 8.0 14.9 21.0

φ = 1 5.6 7.5 10.6 16.9 39.8 26.4 19.6 22.8 16.5 17.4 25.0

Size, Mean Corrected Chi-Squared Errors

φ =∞ 5.0 5.4 5.7 6.3 6.5 7.1 8.4 13.4 8.8 14.7 19.1

φ = 2 5.5 6.5 7.0 8.0 13.5 10.9 11.1 16.2 9.5 16.0 21.7

φ = 1 5.7 9.5 12.8 17.9 35.3 25.8 20.6 23.8 17.9 19.5 26.9

Size Adjusted Power, Gaussian Errors

φ =∞ 15.4 40.0 56.8 64.1 68.8 67.7 65.1 60.8 62.5 41.1 31.3

φ = 2 15.6 43.0 59.0 67.5 71.3 70.8 67.8 62.4 68.1 46.2 31.8

φ = 1 15.4 41.1 57.1 64.0 69.6 67.7 63.9 57.8 66.4 49.7 30.8

Size Adjusted Power, Mean Corrected Chi-Squared Errors

φ =∞ 15.5 34.8 52.0 60.3 67.8 67.0 63.0 58.8 59.7 36.2 29.4

φ = 2 14.1 36.9 59.8 69.5 76.9 75.3 70.8 63.3 70.3 43.0 31.3

φ = 1 15.2 35.7 52.3 64.7 79.3 72.4 62.2 53.3 65.0 39.4 28.4

Notes: The entries are rejection probabilities of nominal 5% level two-sided t−tests about
β in the model yi,j = β + ui,j , i = 1, · · · , 8, j = 1, · · · , 16. Under Gaussian errors, ui,j
are multivariate mean zero unit variance Gaussian with correlation between ui,j and ul,k

given by exp(−φ
p
(i− l)2 + (j − k)2), and the mean corrected chi-squared errors were

generated by ui,j = Φ
−1
χ2−1(Φ(ũi,j)), where ũi,j are the Gaussian model disturbances, Φ is

the cdf of a standard normal and Φ−1
χ2−1 is the inverse of the cdf of a mean corrected chi-

squared random variable. The considered tests are the t−statistic approach with groups
of spatial dimension 8× 8, 8× 4, 4× 4 and 2× 4, at the obvious locations; and inference
based on ȳ = n−1

P8
i=1

P16
j=1 yi,j with two versions of Conley’s (1999) nonparametric

spatial consistent variance estimators of bandwidth b: a simple average ω̂2SA(b) of all cross

products of (yi,j − ȳ)(yk,l − ȳ), i, k = 1, · · · , 8, j, l = 1, · · · , 16, of Euclidian distance
d ≤ b, and a weighted average ω̂2WA(b) of these cross products, with weights w(i, j, k, l) =

1[w̃(i, j, k, l) > 0]w̃(i, j, k, l) and w̃(i, j, k, l) = (1 − |i − k|/b)(1 − |j − l|/b) (cf. equation
(3.14) of Conley (1999)). Alternatives where chosen as β − β0 = c/

√
n with c = 2.5, 3.4,

5.7 under Gaussian disturbances and c = 3.5, 4.7, 8 under chi-squared errors for φ = ∞,

2, 1 respectively. Based on 10,000 replications.

39



theorem provides good approximations even for small samples as long as the underlying

observations are not very fat-tailed or skewed.

The crucial assumption is the approximate independence of the q estimators, and in

applications, it will be challenging to decide on an adequate number and composition of

groups. As formally discussed in Section 3.2, it is impossible to delegate that decision to

the data. On a fundamental level, some a priori knowledge about the correlation structure

is required in order to be able to learn from the data. This is also true of other approaches

to inference, although the assumed regularity tends to be more implicit. For instance,

consider the problem of conducting inference about the mean real exchange rate in 40

years of quarterly data. It seems quite difficult to have a substantive discussion about the

appropriateness of, say, a confidence interval based on Andrews’ (1991) consistent long-run

variance estimator (whose formal validity is based on primitive conditions involving mixing

conditions and the like), or, for that matter, on Kiefer and Vogelsang’s (2005) approach

with a bandwidth of, say, 30% of the sample size. At the same time, it seems at least

conceivable to debate whether averages from, say, 8 year blocks provide approximately

independent information; business cycle frequency fluctuations of the real exchange rate,

for instance, would rule out the appropriateness of 4 year blocks.

In our view, it is a strength of the t−statistic approach that it requires such an ex-
plicit statement of what drives the validity of inference. At the end of the day, inference

requires some assumption about potential correlations, and to agonize about the appro-

priate amount of regularity is precisely what researchers in the field should be doing. The

t−statistic approach offers simple and in some sense efficient inference for one general type
of regularity condition.
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6 Appendix

Proof of Theorem 4:

(i) For the first claim, let Γ1 = ξ − (q − 1), Ω1 = 1 and Γj = Ωj = 1 for j = 2, · · · , q
for some ξ > 0. Then Σ̄q/Σq = ξ2(q− 1 + (1− q + ξ)−2)/q2, so that Σ̄q/Σq → 0 as ξ → 0.

For the second claim, let Γ1 = Ω1 = Ik, and Ωj = ξIk, Γj = ςIk for j = 2, · · · , q, for
some ς > 0, ξ > 0, so that

Pq
j=1 Γj = ((q − 1)ς + 1)Ik. Then

Σq =
ξ(q − 1) + 1
((q − 1)ς + 1)2 Ik and Σ̄q =

1 + (q − 1)ξ/ς2
q2

Ik.

Letting ξ = 1 and ς → 0 proves the second claim, and with ξ = ς4 and ς → 0 we find

ι0Σ̄qι/ι
0Σqι→ 1/q2.

Also, for k ≥ 2, let Γ1 = diag(A, Ik−2) ∈ Pk with A = ((1, 1
2
)0, (1

2
, 1)0), Ω1 =

Γ1 diag(1, ξ, Ik−2)Γ1 and Γj = Ωj = Ik for j = 2, · · · , q. Then

ι0Σ̄qι = 1/q and ι0Σqι =
−3− 4q + 16q3 + 4ξ(q − 1)2

(1− 4q2)2

so that ι0Σ̄qι/ι
0Σqι→ 0 as ξ →∞.

We are thus left to show that for k = 1, Σ̄q/Σq ≥ 1/q2 for all positive numbers {Γj}qj=1
and nonnegative numbers {Ωj}qj=1. But

Σq =

Ã
qP

j=1

Γj

!−2
qP

j=1

Ωj ≤
Ã

qP
j=1

Γ2j

!−1
qP

j=1

Ωj ≤
qP

j=1

Γ−2j Ωj = q2Σ̄q.

(ii) Note that for any real full column rank matrix X, X(X 0X)−1X 0 is idempotent, so

that I−X(X 0X)−1X 0 is positive semidefinite. Therefore, for any real matrix Y of suitable

dimension, Y 0Y − Y 0X(X 0X)−1X 0Y is positive semidefinite.

For the first claim, let Ω̄j = ΓjΓ
0
j. Then Σ̄q = q−1Ik, and Σq =³Pq

j=1 Γj
´−1 ³Pq

j=1 ΓjΓ
0
j

´³Pq
j=1 Γ

0
j

´−1
. It suffices to show that Σ−1q − Σ̄−1q is nega-

tive semidefinite, and this follows from the above result with Y = (Ik, · · · , Ik)0 and
X = (Γ1, · · · ,Γq)0.
For the second claim, let Ωj = Γj. Then Σ̄q = q−2

Pq
j=1 Γ

−1
j and Σq =

³Pq
j=1 Γj

´−1
,

and the result follows by setting Y = (Γ−1/21 , · · · ,Γ−1/2q )0 and X = (Γ
1/2
1 , · · · ,Γ1/2q ).

(iii) Immediate from Σ̄q = q−2Γ
³Pq

j=1Ωj

´
Γ0 and

Pq
j=1 Γj = qΓ.
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