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optimal subgame perfect payoffs for all discount factors. Afterwards, we examine
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1 Introduction

Relational contracts are self-enforcing informal agreements that arise in many long-

term relationships, often in response to obstacles to write exogenously enforceable

contracts. Examples include the non-contractible aspects of employment relations,

illegal cartel agreements, or buyer-seller relations in which complete formal con-

tracts are too costly to write. Agreements between countries also often have the

nature of a relational contract, when there is no institution that is able or will-

ing to enforce compliance with the agreed terms. In these examples, monetary

transfers play a role in the relationships, be it in form of prices, bonuses or other

compensation schemes, and could thus also be used to sustain the relational con-

tract. Moreover, the relational contracts are drafted and negotiated, and meetings

continue to take place as the relationship unfolds. In this paper, we analyze rela-

tional contracts under these circumstances: with renegotiation and the possibility

to make monetary transfers.

As an illustration how side-payments can be used in a relational contract

consider the case of collusive agreements. Cartels sometimes use compensation

schemes to make sure that each firm in the cartel stays with the target (see

Harrington (2006) for details1). A cartel member that violates the agreement

is required to buy a certain quantity from a competitor, or to transfer a valuable

customer to a competitor. Such compensation schemes seem more robust to rene-

gotiation than threatening with an immediate price war after a violation of the

agreement. Price wars are costly for all firms, and therefore cartel members will

be tempted to agree to ignore the violation. In contrast, if a deviating firm must

pay a fine, competitors gain from the punishment and have therefore no incentive

to renegotiate the agreement. However, to induce a firm to pay the compensation

there must be the threat of a real punishment in case no payment is made, i.e.

a punishment that does not require the voluntary participation of the punished

firm. Renegotiation can then become a constraint again.

The present paper investigates these issues and provides a characterization of

renegotiation-proof relational contracts given arbitrary discount factors. We study

infinitely repeated two player games with perfect information where in each period

1For a list of cartels in which such compensation schemes have been used see the introduc-

tion of Harrington and Skrzypacz (2007), who also offer a theoretical analysis of collusion with

imperfect monitoring.
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players can make monetary transfers before they play a simultaneous move stage

game. We translate Abreu’s (1988) optimal penal codes to this set-up and show

that every Pareto optimal subgame perfect payoff can be achieved using a class of

simple strategy profiles, which we call stationary contracts. In a stationary con-

tract, the same action profile is played in every period. A player who deviates is

required to pay a fine to the other player, and after payment equilibrium play is

resumed. If a player does not make a required payment, there is a one time play

of a punishment action profile, followed by an adjustment payment, after which

play continues as on the equilibrium path. Any feasible distribution of joint sur-

plus can be achieved by incentive compatible up-front payments; equilibrium path

payments in later periods can be used to balance incentives constraints between

the two players.

In the second part of the paper, we characterize renegotiation-proof stationary

contracts, and show that again, one can often restrict the analysis to the simple

class of stationary contracts to find payoffs that survive renegotiation-proofness

refinements. Since a period consists of two stages, a crucial question is at what

times renegotiation is possible. In the existing literature, different assumptions

have (often implicitly) been made. For example, Fong and Surti (2009) assume

in their study of repeated Prisoner Dilemma games with side-payments that rene-

gotiation is possible before the payment and the play stage, while Levin (2003)

assumes in his study of repeated principal-agent relationships that renegotiation

is only possible before the payment stage.

Levin observes that the possibility of renegotiation before the payment stage

does not alter the Pareto frontier of implementable payoffs. This observation easily

extends to our set-up in which both players can take actions. The reason is that

punishment at the payment stage takes the form of the deviator paying a fine to

the other player immediately followed by a return to equilibrium play. Hence, in

a Pareto efficient stationary contract, all continuation equilibria that start at the

payment stage achieve the highest feasible joint continuation payoff. This means

that if renegotiation is allowed only before payments can be made, the threat of

inefficient continuation play (which is necessary to induce payment of the fine) is

never subject to renegotiation.

In the main part of this paper, we also allow renegotiations before the play

stage. Even having fixed the timing of renegotiation, there exist several different

concepts of renegotiation-proofness.
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We first adapt strong perfection (see Rubinstein, 1980) to our setting. A sub-

game perfect equilibrium is strong perfect if all its continuation payoffs lie on the

Pareto frontier of subgame perfect continuation payoffs. In general, the set of

strong perfect equilibrium payoffs is a subset of the Pareto frontier of subgame

perfect payoffs, but it may well be empty. We show that every strong perfect

payoff can be achieved by a stationary contract and derive simple conditions that

allow to check for strong perfection. These conditions show that in simple prin-

cipal agent games strong perfect stationary contracts always exist, while in other

examples they often –though not always– fail to exist.

We then analyse the concepts of weak renegotiation-proofness (WRP) and

strong renegotiation-proofness (SRP) introduced by Farell and Maskin (1989).

An equilibrium is WRP if none of its continuation equilibria Pareto-dominate

each other. This captures the idea that a necessary condition for renegotiation-

proofness is that players never want to renegotiate to an alternative continuation

equilibrium of the original contract.2 Strong renegotiation-proofness requires that

all continuation equilibria lie on the Pareto frontier of weakly renegotiation-proof

payoffs. If the discount factor is not below 1
2
, we show that every Pareto-optimal

WRP and every SRP payoff can always be achieved by stationary contracts. In

general SRP equilibria may not exist for intermediate discount factors, but we

provide simple sufficient conditions to check for existence. For discount factors

below 1
2
, stationary contracts cannot always be used; instead the implementation

of Pareto-optimal WRP payoffs can sometimes require alternation between differ-

ent action profiles or money burning on the equilibrium path as we illustrate for

a Prisoners’ Dilemma game.

Our analysis is most closely related to the work of Baliga and Evans (2000),

who study asymptotic behavior of SRP equilibria in a setting where payments

and actions are chosen simultaneously. They establish that the set of SRP pay-

offs converges to the Pareto frontier of individually rational stage game payoffs

when players become infinitely patient. Since under simultaneous choice of ac-

tions and payments inefficient action profiles are subject to renegotiation, their

set-up is more closely related to our analysis where renegotiation before play stage

is possible than to the case where only renegotiation before payment stages is

considered. The characterization of optimal contracts for intermediate discount

2Weak renegotiation-proofness is the terminology of Farell and Maskin (1989), Bernheim and

Ray (1989) introduce an essentially identical concept and call it internal consistency.
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factors is facilitated by our sequential timing of payments and actions.

Fong and Surti (2009) study infinitely repeated prisoner dilemma games with

side payments using the same timing as we do. They look at intermediate discount

factors that can differ between players and derive sufficient conditions under which

Pareto-optimal subgame perfect payoffs can be implemented as a WRP equilib-

rium. They find that, with side payments, restriction to stationary equilibrium

paths is possible, and conjecture that this should hold more generally. Our result

that for general two player stage games optimal subgame perfect equilibria can

always have a stationary structure is also in line with the intuition from previ-

ous work on relational contracts, including models of principal agent relationships

(Levin, 2003), business partnerships (Doornik, 2006 , Baker, Gibbons and Murphy,

2002, or Blonski and Spagnolo, 2003) or collusion (Miklos-Thal, 2008).

The paper is organized as follows. In Section 2 we describe the model and

introduce stationary contracts. Section 3 first establishes that all Pareto-optimal

subgame perfect payoffs can be implemented by a stationary contract. We then

explain a simple heuristic to characterize the Pareto-frontier of subgame perfect

payoffs for all discount factors. Section 4 first briefly establishes that renegotia-

tion only before payment stage does not restrict the set of Pareto-optimal subgame

perfect payoffs. We then allow for renegotiation at both stages and use stationary

contracts to derive simple conditions that characterize strong perfect payoffs. In a

similar fashion, Section 5 characterizes weak and strong renegotiation-proof pay-

offs and exemplifies the derived conditions (examples include Prisoners’ Dilemma

games and Bertrand duopolies with symmetric or asymmetric costs). Section 6

briefly summarizes the results. All proofs are relegated to the appendix.

2 Model and Stationary Contracts

2.1 The game

We consider an infinitely repeated two-player game with perfect monitoring and

common discount factor δ ∈ [0, 1). Players are indexed by i, j ∈ {1, 2} and we use

the convention that j �= i if both i and j appear in an expression. Every period t

comprises two substages, without discounting between the substages: a payment

stage in which both players choose a nonnegative monetary transfer to the other

player, and a play stage in which the players play a simultaneous move game.
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The stage game of the play stage is given by a continuous payoff function

g : A1 × A2 → R × R, where the set Ai is the compact action space of player

i. We denote action profiles of this stage game by a = (a1, a2) and the set of all

action profiles by A = A1×A2. The joint payoff from an action profile action a is

denoted by G(a) = g1(a) + g2(a). The best reply or cheating payoff of player i is

denoted by ci(a) = max{ã∈A | ãj=aj} gi(ã).

In the beginning of each period, each player may decide to make a monetary

transfer to the other player. The players’ endowment with money is assumed to

be sufficiently large such that wealth constraints do not play a role. We denote by

pi = p̃i − p̃j player i’s net payment given that player i and j make gross transfers

p̃i and p̃j. We will generally describe payments in the form of net payments,

assuming that only the player with a positive net payment makes a monetary

transfer. Clearly, simultaneous monetary transfers by both players will never be

necessary to achieve a certain equilibrium payoff. Players are risk-neutral and

utility is quasi-linear in money. Player i’s payoff in a period with net payments

p = (p1, p2) and play stage action profile a is given by gi(a)− pi.

A history that ends before stage k ∈ {pay, play} in period t is a list of all

transfers and actions that have occurred before this point in time. Let Hk be

the set of all histories that end before stage k. A strategy σi of player i in the

repeated game maps every history h ∈ Hplay into an action ai ∈ Ai, and every

history h ∈ Hpay into a payment. We write σ|h for the profile of continuation

strategies following history h. We denote by ui(σ|h) player i’s average discounted

continuation payoff, i.e. the discounted continuation payoff multiplied by (1− δ).3

We use u(σ|h) = (u1(σ|h), u2(σ|h)) to denote the vector of continuation payoffs

and denote he joint continuation payoff by U(σ|h) = u1(σ|h)+ u2(σ|h). Similarly,

u(σ) and U(σ) denote the tuple and sum of payoffs for the strategy profile σ. We

often make use of the fact that u(σ) is equal to a convex combination of current

period payoff (weighted by 1− δ) and future average payoff (weighted by δ).

We denote by ΣkSGP the set of subgame perfect (continuation) equilibria that

start in stage k. If σ is a subgame perfect equilibrium, we call u(σ) a subgame

perfect payoff. We say a set of subgame perfect equilibria Σ implements a set of

payoffs U if U =
⋃

σ∈Σ

u(σ). All continuation payoffs of a given strategy profile σ at

3We assume that payoffs are directly realized after each stage within a period. This means

that if a history h ends before play stage in period t then the transfers made in the pay stage of

period t do not appear in the continuation payoff ui(σ|h).
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stage k are denoted by Uk(σ) = {u(σ|h)| h ∈ Hk}. The set of subgame perfect

(continuation) payoffs at stage k is denoted by UkSGP =
⋃

σ∈Σk
SGP

Uk(σ).

Note that we have restricted the game to pure strategies. Similar to Farell and

Maskin (1989) and Baliga and Evans (2000), one can allow for mixing in the stage

game by letting the action space A contain all mixed strategies of the original

stage game and the payoff function g(a) describe the expected payoffs. It is then

assumed that a player can ex-post observe the other player’s mixing probabilities

and not only the realized outcome.

For convenience, we assume that the stage game has a Nash equilibrium in

A. Our main results would also hold without this assumption given that the

discount factor δ is sufficiently large, such that a subgame perfect equilibrium of

the repeated game exists.

2.2 Stationary contracts

In the following, we define a class of simple stationary strategy profiles which are

helpful to characterize the Pareto-frontier of subgame perfect payoffs and to study

the effects of different renegotiation-proofness requirements.

Definition 1 A stationary strategy profile is characterized by a triple of action

profiles (ae, a1, a2), called an action structure, and a payment scheme in the fol-

lowing way:

In the payment stage of period 0, there are up-front payments p0.

Whenever a player makes the prescribed payment in the payment stage, the

equilibrium actions ae are played in the next play stage.

Whenever there is no (or a bilateral) deviation from ae, equilibrium payments

pe are conducted in the next payment stage.

If player i unilaterally deviates from a prescribed action, he pays a fine F i ≥ 0

to the other player in the subsequent payment stage.

If player i deviates from a required payment, the punishment profile ai is played

in the next play stage and adjustment payments pi are made in the subsequent

payment stage.

The structure of a stationary strategy profile is illustrated in Figure 1.

One can express stationary strategy profiles also in terms of simple strategy

profiles as defined by Abreu (1988). A simple strategy profile for two players
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Pay stage Play stage Pay stage Play stage …

Punishment of player 1 a1 F1 a1

Punishment act. Fine

p1 …

Adj. payment

Equilibrium path p0  ae pe ae …

Up-front pay. Eq. actions Eq. payment

p2 …

Adj. payment

Punishment of player 2 a2 F2 a2

Punishment act. Fine

Period t=0 Period t=1,2,3...

Figure 1: Structure of stationary strategy profiles. Arrows indicate continuation

play if no player deviates (or a bilateral deviation took place). If player 1 (2)

unilateraly deviates then the top (bottom) row will be played in the next stage.

prescribes play of the initial path Q0, while any unilateral deviation from the

prescribed paths by player i is followed by play along the punishment path Qi. In

our setting, a stationary strategy profile consists of the initial path

Q0 = (p0, ae, pe, ae, pe, ...)

and two punishment paths for player i, depending on whether the deviation oc-

curred in the payment stage or in the play stage:

Qipay = (F
i, ae, pe, ae, pe, ...)

Qiplay = (a
i, pi, ae, pe, ae, pe, ...).

Abreu (1988) is build around the now familiar idea that for subgame perfection

the punishment does not need to fit the crime. Any unilateral deviation from a

prescribed path can be punished by the same continuation equilibrium, namely

the worst possible subgame perfect equilibrium for that player. The optimal penal

codes, as such worst play paths are called in Abreu’s work, then often have a “stick

and carrot” structure: they begin with the worst possible action for the punished

player, and may reward him for complying with the punishment further along the

path. In our framework, the punishment paths have a similar structure: chosen
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optimally, the action ai must have a low enough cheating payoff ci(a
i) to deter

a deviation by player i. The adjustment payment pi is used to fine-tune the

punishment and to guarantee that both the punished player i and the punishing

player j have no incentives to deviate from the punishment profile ai.

Recall that there are two different punishment paths because a punishment can

start in the payment or play stage. We fix for all stationary strategy profiles the

adjustment payment pi such that both punishment paths yield the same payoff

for the punished player:

pii = F
i −
uii − gi(a

i)

δ
. (1)

It turns out that fixing adjustment payments in this way does not restrict the

ability of stationary strategy profiles to characterize optimal subgame perfect and

renegotiation-proof payoffs.

Definition 2 A stationary strategy profile that constitutes a subgame perfect equi-

librium is called a stationary contract.

In the following, we find conditions that imply subgame perfection of a sta-

tionary strategy profile. It is often more convenient to think about a stationary

contract in terms of the continuation payoffs it defines, and not in terms of the

actual payments that have to be made. We denote player i’s continuation payoff

before a play stage on the equilibrium path by

uei = gi(a
e)− δpei . (2)

Player i’s continuation payoff when punished is called punishment payoff and is

given by

uii = −(1− δ)F
i + uei . (3)

To verify that a given stationary strategy profile is a subgame perfect equi-

librium, it is sufficient to check that there are no profitable one-shot deviations.

We first consider the punishment of player i ∈ {1, 2}. Irrespective of the stage

at which the punishment starts, player i’s payoff is uii if he complies with the

punishment. If he deviates once and complies afterwards, player i’s payoffs are uii

or ci(a
i)(1 − δ) + δuii depending on whether the punishment started in the pay-

ment stage or play stage. Therefore, player i will not deviate from his punishment

whenever

uii ≥ ci(a
i). (4)

9



We now turn to the role of player j in player i’s punishment. We do not only have

to ensure that player j does not deviate from the punishment profile ai but also

that he pays the adjustment payment (in case pij > 0). It can be easily checked

that both conditions are fulfilled if and only if

(1− δ)G(ai) + δG(ae)− uii ≥ (1− δ)cj(a
i) + δujj . (5)

Note that the left hand side of condition (5) is player j’s continuation payoff when

punishing player i at play stage.

On the equilibrium path, compliance with both the actions ae and the payments

pe is achieved if and only if for each player i = 1, 2

uei ≥ (1− δ)ci(a
e) + δuii. (6)

Finally, an up-front payment p0 is subgame perfect whenever for both players

i = 1, 2

p0i ≤ F
i. (7)

To summarize, a stationary strategy profile with action structure (ae, a1, a2), pay-

ments p0, pe, and fines F 1, F 2 constitutes a stationary contract if conditions (4),

(5), (6), and (7) are satisfied for both players. The following result is easy to

verify.

Remark 1 Let σ be a stationary contract with equilibrium actions ae and punish-

ment payoffs u11 and u22. The set of of those stationary contracts that differ from

σ at most in the upfront-payments p0 implements the payoffs on the line from

(u11, G(a
e)− u11) to (G(a

e)− u22, u
2
2).

In particular, this result means that for given equilibrium actions and punish-

ment payoffs, the set of feasible distributions of the joint payoff G(ae) is indepen-

dent of the equilibrium payments pe. The intuition is simple: if a player makes

lower equilibrium payments, he is willing to make higher up-front payments that

can counterbalance the distributive effects of the equilibrium payments.

Hence, equilibrium payments pe can be chosen for the sole purpose of smooth-

ing the incentives not to deviate from the equilibrium path. In fact, whenever

the sum of the two inequalities in (6) holds, then pe can be chosen such that

the individual conditions hold for both players. Furthermore, if we are merely

interested in subgame perfection, we can set fines to the maximal level such that
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punishment payoffs are given by uii = ci(a
i).4 Given such appropriate selection

of equilibrium payments and fines, we can derive simple conditions for checking

whether a stationary contract with some specific action structure exists:

Lemma 1 There exists a stationary contract with action structure (ae, a1, a2) if

and only if

G(ae) ≥ (1− δ)(c1(a
e) + c2(a

e)) + δ(c1(a
1) + c2(a

2)) (SGP-ae)

and for both players i = 1, 2

(1− δ)G(ai) + δG(ae)− ci(a
i) ≥ (1− δ)cj(a

i) + δcj(a
j). (SGP-ai)

3 Optimal Subgame Perfect Contracts

3.1 Main Result

This section shows that in our setting every Pareto-optimal subgame perfect payoff

can be achieved by stationary contracts and we illustrate how stationary contracts

allow a simple characterization of these payoffs. We denote the weak Pareto fron-

tier of the set of subgame perfect payoffs by P(UpaySGP )
5. Furthermore, let

ŪSGP := sup
u∈Upay

SGP

u1 + u2

be the supremum of joint payoffs in subgame perfect equilibria, and

ūiSGP := inf
u∈Upay

SGP

ui

be the infimum of player i’s payoffs in subgame perfect equilibria. Note that these

values would not change if the range of payoffs UpaySGP was replaced by UplaySGP , the

set of subgame perfect continuation payoffs at the play stage.

For a given discount factor, we call an action profile ae optimal if G(ae) = ŪSGP

and there exists a stationary contract in which ae is played on the equilibrium

4These maximal fines are given by F i = 1
(1−δ)(u

e
i − ci(a

i)). The maximal fines become very

large as the game’s surplus rises. Such extreme values are not necessary, but convenient in our

search for all sustainable equilibrium payoffs.
5The weak Pareto frontier is defined as P(UpaySGP ) = {(v1, v2) : v1 ≥ u1, v2 ≥ u2 for all

u ∈ UpaySGP}.
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path. Similarly, we call an action profile ai a strongest punishment for player i if

ci(a
i) = ūiSGP and there exists a stationary contract in which ai is the punishment

profile for player i. Note that a stationary contract with strongest punishments

and maximal fines uses optimal penal codes in the sense of Abreu (1988). For

the remainder of this paper, the labels ae and ai will always refer to an optimal

action-profile and strongest punishment, respectively.

Proposition 1 An optimal action profile ae and strongest punishments ā1, ā2 al-

ways exist. The Pareto-frontier of subgame perfect payoffs is linear and can be

implemented by stationary contracts with action structure (ae, a1, a2) and maximal

fines.

3.2 Finding optimal action profiles and strongest punish-

ments

Given Proposition 1, characterizing the Pareto-frontier of subgame perfect pay-

offs boils down to finding an optimal action profile ae and strongest punishments

a1, a2 for a given discount factor. Using these action profiles, any Pareto-optimal

subgame perfect payoff can be achieved by appropriate up-front and equilibrium

payments. Recall from Lemma 1 that a stationary contract with action structure

(ae, a1, a2) exists if and only if

G(ae) ≥ (1− δ)(c1(a
e) + c2(a

e)) + δ(c1(a
1) + c2(a

2)) (SGP-ae)

and for both players i = 1, 2

δG(ae) + (1− δ)G(ai)− ci(a
i) ≥ δcj(a

j) + (1− δ)cj(a
i). (SGP-ai)

These conditions have a convenient structure: More efficient equilibrium play, i.e.

higher levels of G(ae), always relaxes conditions (SGP-ai) and thereby facilitates

stronger punishments. Similarly, a stronger punishment of player i, i.e. lower levels

of ci(a
i), always facilitates a stronger punishment of player j and more efficient

equilibrium play.

Consequently, there is a simple iterative procedures that yields a list of optimal

action profiles and optimal punishments for all discount factors in finite stage

games. For each round n = 0, 1, 2, ... we define an action structure (ae(n), a1(n),

a2(n)), starting with ae(0) ∈ argmaxa∈AG(a) and a
i(0) ∈ argmina∈A ci(a). This
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means we start with the most efficient action profile and the harshest punishments

of the stage game.

For k ∈ {e, 1, 2}, let δk(n) denote the minimal discount factor for which the

action structure of round n fulfills condition (SGP-ak) and let δ∗(n) ≡ maxk δ
k(n).6

Clearly, if δ∗(0) < 1 then ae(0) is an optimal action profile and a1(0), a2(0) are

strongest punishments for every discount factor δ ∈ [δ∗(0), 1].

We say an action profile ak relaxes condition (SGP-ak) in round n if replacing

ak(n) by ak (keeping the other action profiles unchanged) makes condition (SGP-

ak) hold for a larger set of discount factors. Let Ak(n) denote the set of action-

profiles that relax condition (SGP-ak) in round n. If δe(n) = δ∗(n), we choose

in round n + 1 an action-profile ae(n + 1) ∈ argmaxa∈Ae(n)G(a), which relaxes

condition (SGP-ae) and has a joint payoff as large as possible. Similarly, if δi(n) =

δ∗(n), we choose an action-profile ai(n + 1) ∈ argmina∈Ai(n) ci(a
i), which relaxes

condition (SGP-ai) and has a cheating payoff as small as possible. If δk(n) < δ∗(n),

we don’t need to relax condition (SGP-ak) and keep the old action-profile, i.e.

ak(n+ 1) = ak(n).

If in round n, we find δ∗(n) < minm<n{δ
∗(m)} then ae(n) is an optimal action

profile and ai(n) are optimal punishments for all discount factors δ ∈ [δ∗(n),

minm<n{δ
∗(m)}). The procedure iterates until in some round n∗ all selected action-

profiles are a Nash equilibrium of the stage game, which implies δ∗(n∗) = 0.

Clearly, the procedure will always terminate and yields a list of optimal action

profiles and strongest punishments for every discount factor.

For the selection of action-profiles in each round one should observe two points:

Whenever there are multiple candidates for the equilibrium action ae that achieve

the same joint payoff G(ae), one should pick from this set an action profile that

minimizes the sum of cheating payoffs c1(a
e) + c2(a

e) in order to relax condition

(SGP-ae) as much as possible. Similarly, whenever there are multiple candidates

for a punishment profile ai that have the same cheating payoff ci(a
i), one should

choose an action-profile that maximizes G(ai)− cj(a
i) in order to relax condition

(SGP-ai) as much as possible.

6We normalize δk(n) = 1 if no discount factor δ < 1 fulfills condition (SGP-ak).
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3.3 Example: Simplified Cournot Game due to Abreu

We now illustrate the procedure above, for a simplified Cournot game due to Abreu

(1988). Two firms simultaneously choose either low (L), medium (M), or high (H)

output and stage game payoffs are given by the following matrix:

Firm 2

L M H

L 10, 10 3, 15 0, 7

Firm 1 M 15, 3 7, 7 −4, 5

H 7, 0 5,−4 −15,−15

Joint payoffs are maximized if firms choose (L,L), the unique Nash equilibrium

of the stage game is (M,M), and high output minimizes the cheating payoff of

the other firm. Abreu considered the case without side-payments and constructed

optimal penal codes that support collusive play of (L,L) for any discount factor

δ ≥ 4
7
, while the threat of an infinite repetition of the stage game equilibrium can

sustain collusion only if δ ≥ 5
8
.

For the case with side payments, the first candidate for an optimal action profile

is clearly the collusive outcome, i.e. ae(0) = (L,L). A harshest punishment of

the stage game requires that the punisher chooses high output. Maximization of

G(ai) − cj(a
i) requires that the punished player chooses medium output, i.e. we

have a1(0) = (M,H) and a2(0) = (H,M).While it would be more efficient for both

players if the punished player chooses low output, the choice of medium output

substantially reduces the punishers’ incentives to deviate from the punishment and

therefore makes the punishment easier to implement.

With this action structure, condition (SGP-ae) holds for all δ ≥ 1
3
while condi-

tions (SGP-ai) hold for all δ ≥ 3
13
. Hence, the collusive outcome can be sustained

for all discount factors δ ≥ 1
3
. To characterize Pareto-optimal payoffs for lower

discount factors, we relax condition (SGP-ae) by choosing either ae(1) = (L,M)

or ae(1) = (M,L) and keep the previous punishment profiles. Condition (SGP-ae)

then holds for all δ ≥ 2
11

while conditions (SGP-ai) hold for all δ ≥ 1
4
. Thus,

for all δ ∈ [ 1
4
, 1
3
), a partial collusive equilibrium play of (L,M) or (M,L) can

be sustained. Note that the corresponding stationary contracts require positive

equilibrium payments from the firm that chooses medium output to the firm that

chooses low output.7 Continuing the procedure, we find that for lower discount

7Using condition (6) (see Section 2.2) one finds that these payments have to lie in the interval
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factors only an infinite repetition of the stage game equilibrium can be sustained.

3.4 Example: Prisoners’ Dilemma

For another example, consider a Prisoners’ Dilemma game with payoff matrix:

Player 2

C D

Player 1 C (1, 1) (S − d, d)

D (d, S − d) (0, 0)

where d > 1 > S
2
. The first candidates for strongest punishments are a1 = a2 =

(D,D). Since this strongest punishment is a Nash equilibrium of the stage game,

conditions (SGP-ai) hold for all discount factors. The first candidate for optimal

equilibrium actions is mutual cooperation (C,C) and condition (SGP-ae) shows

that it can be sustained for all δ ≥ d−1
d
. If S > 1 we find that the asymmetric

equilibrium action-profiles (C,D) and (D,C) are optimal for all δ ∈ [d−S
d
, d−1
d
).

For lower discount factors, only the Nash equilibrium of the stage game (D,D)

can be sustained.

4 Renegotiation-Proofness: Strong Optimality

and Strong Perfection

4.1 Definitions and Main Results

In many relationships it seems reasonable that players have the possibility to

meet and renegotiate their existing relational contract. If players anticipate such

a renegotiation, a subgame-perfect equilibrium may cease to be stable, however.

There are different concepts of renegotiation-proofness that intend to refine the

set of subgame perfect equilibria to those equilibria that are robust against this

criticism.

We first consider the concept of strong optimality that Levin (2003) applies in

his study of repeated principal-agent games. Levin implicitly assumes that rene-

gotiation can only take place at the beginning of a period, i.e. before the payment

[4−7δ
δ
, 15].
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stage but not before the play stage. A minimal requirement for a successful rene-

gotiation at this stage is that there exists a new contract that is subgame perfect

and creates some surplus compared to the existing contract, in the sense of achiev-

ing a higher joint payoff. Consequently, there is never scope for renegotiation if

all continuation equilibria already achieve the highest joint payoff USGP that is

possible in a subgame perfect equilibrium.

Definition 3 A subgame perfect equilibrium σ is strongly optimal (w. r. t. rene-

gotiations at payment stages) if U(σ|h) = USGP for all h ∈ Hpay.

Proposition 1 directly implies the following result:

Corollary 1 Every stationary contract with optimal equilibrium actions ae is

strongly optimal. The Pareto-frontier of subgame perfect and strongly optimal

payoffs coincides.

The reason that every stationary contract with optimal equilibrium actions is

strongly optimal is that in every continuation equilibrium starting at a payment

stage, the required payments will always be conducted and afterwards the optimal

actions ae are played in all subsequent periods. Since by assumption there is no

renegotiation directly before a play stage, continuation equilibria that require the

play of a punishment profile ai are never subject to renegotiation.

Assuming that no renegotiation is allowed before a play stage has certain appeal

in situations where payments can be organized quickly compared to the time it

requires to renegotiate a contract. The reason is that if one allows for renegotiation

before play stage, one implicitly assumes that there is sufficient time to renegotiate

future actions while there is no more time to conduct further payments before these

actions are conducted.

A more stringent test of renegotiation, however, considers the possibility of

renegotiation at all stages within a period. This is assumed, for example, by Fong

and Surti (2009) who study repeated Prisoners’ Dilemma games with side pay-

ments. The strictest concept of renegotiation-proofness would be a modification

of strong optimality that requires for every continuation equilibrium – including

those starting at a payment stage– that the sum of continuation payoffs is equal to

the highest possible value USGP . Since punishment actions typically require some

efficiency loss, this condition is too strong to allow for much insightful analysis,

however. A slightly weaker requirement follows from adapting strong perfection

(see Rubinstein, 1980) to our set-up.

16



Definition 4 A subgame perfect equilibrium σ is strong perfect at both stages if

Uk(σ) ⊂ P(UkSGP ) for all k ∈ {pay, play}.

Strong perfection requires for both stages that no continuation payoff is strictly

Pareto dominated by another subgame perfect continuation payoff of the same

stage. Strong perfect equilibria may fail to exist, but the concept provides a useful

sufficient condition for renegotiation-proofness. If there is no subgame perfect

continuation equilibrium that makes both players better off, then one may feel

confident that renegotiation is deterred. Let uiSP denote the infimum of player i’s

payoffs in strong perfect equilibria, in case such equilibria exist.

Proposition 2 Every strong perfect payoff can be implemented by a stationary

contract with optimal equilibrium actions āe. The set of strong perfect payoffs is

either empty or given by the line from (u1SP , G(ā
e)− u1SP ) to (G(ā

e)− u2SP , u
2
SP ).

Clearly, a strong perfect stationary contract requires optimal equilibrium ac-

tions āe, but it is not generally the case that optimal penal codes can be used, since

the corresponding continuation payoffs may be Pareto-dominated. We now derive

results that help to find strong perfect equilibria for a given game and discount

factor or to verify their non-existence. We say an action profile ã is admissible

for a given discount factor δ if there exists some subgame-perfect equilibrium in

which ã is played on the equilibrium path.

Lemma 2 An action profile ã is admissible if and only if

(1− δ)G(ã) + δG(ae) ≥ (1− δ)(ci(ã) + cj(ã)) + δ(ci(a
i) + cj(a

j)). (8)

Proposition 3 A stationary contract with action structure (āe, a1, a2) and pun-

ishment payoffs u11 and u22 is strong perfect if and only if for both players i = 1, 2

and for all admissible ã with G(ã) > G(ai) it holds that either

(1− δ)G(ai)− uii ≥ (1− δ) (G(ã)− ci(ã))− δci(ā
i) or (SP1)

uii ≥ (1− δ)(G(ã)− cj(ã)) + δG(ā
e)− δcj(ā

j) (SP2)

Intuitively, conditions (SP1) and (SP2) concern the punishment for player i at

play stage. Condition (SP1) ensures that there exist no subgame perfect continu-

ation equilibria that give a higher payoff to the punishing player j, i.e., that the

punisher has no incentive to renegotiate the punishment. Should such continuation
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equilibria exist, condition (SP2) ensures that they would make the punished player

i worse-off. That one cannot always restrict attention to stationary contracts with

maximal fines is due to the fact that we do not allow for correlated strategies. In a

stationary contract that ceases to be strong perfect if the maximal fines are used,

the punishment payoff is always dominated by a convex combination of payoffs in

UplaySGP .

We now derive two Corollaries of Proposition 3 that facilitate the analysis

in many examples. We say a strongest punishment āi of player i is an optimal

strongest punishment if there exists no other strongest punishment of player i

with a higher joint payoff than G(āi).

Corollary 2 A stationary contract with optimal strongest punishments ā1, ā2,

maximal fines and optimal equilibrium actions is strong perfect if and only if for

all admissible action profiles ã and both players i = 1, 2

G(āi)− ci(ā
i) ≥ G(ã)− ci(ã). (9)

Corollary 3 There exists no strong perfect stationary contract with action struc-

ture (āe, a1, a2) if for both players i = 1, 2 we have G(āe) > G(ai) and

(1− δ) (G(āe)− ci(ā
e))− δci(ā

i) > (1− δ)G(ai)− ci(a
i). (10)

These two corollaries can be used to show that in Abreu’s simple Cournot

example there is no strong perfect equilibrium, except for the Nash equilibrium of

the stage game in case δ < 1
4
. Instead of exercising this non-existence in detail, we

now present two examples in which strong perfect equilibria (at least sometimes)

exist.

Example: Principal-Agent Game

Assume that only player 1 (the agent) chooses an action a ∈ R+0 . The action

creates a non-positive payoff g1(a) for player 1 and a nonnegative benefit g2(a)

for player 2 (the principal). One interpretation is that player 1 is a supplier who

delivers a product of a certain quality, where higher quality is more expensive.

Another interpretation is that player 1 is a worker who can exert work effort a,

which can be observed by the employer. The agent can choose a ‘do-nothing’

action a = 0 that yields zero payoff for both players.
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Clearly, a2 = 0 is a strongest punishment for the principal. Since the agent’s

cheating payoff in play stage is always 0, every action a1 ∈ R+0 is by definition a

strongest punishment for the agent. In particular, also the optimal equilibrium

actions ae constitute a strongest punishment for the agent. Using these strongest

punishments, we find from conditions (SGP-ae) and (SGP-ai) that the optimal

equilibrium actions ae solve maxae∈AG(a
e) subject to δg2(a

e) ≥ −g1(a
e).

Using Corollary 2, we find that the stationary contracts with action structure

(ae, ae, 0) are strong perfect, if and only if for every admissible ã the condition

G(ã)− g2(ã) ≤ 0 holds. Since g1(ã) ≤ 0, this condition is always fulfilled. Hence,

in this simple complete information game, we confirm the intuition of Levin (2003)

that when the incentive problem is one-sided, optimal SGP payoffs can be imple-

mented in a renegotiation-proof way.

Example: Strong Perfection in the Prisoners’ Dilemma

Recall the Prisoners’ Dilemma game from Section 3.4. It is instructive to first

consider the case S < 1 and d−1
d
≤ δ < d−S

d−S+2
. Then optimal equilibrium actions

are ae = (C,C), strongest punishments are ā1 = ā2 = (D,D), and Lemma 2

implies that (C,D) and (C,D) are not admissible. Corollary 2 implies that there

exists a strong perfect stationary contract if and only if d ≥ 2.

These strong perfect stationary contracts rely on punishments at play stage

in which the inefficient action-profile (D,D) is played for one period. It may

seem surprising that such continuation equilibria can lie on the Pareto-frontier of

subgame perfect continuation equilibria, and not be Pareto dominated by contin-

uation equilibria in which (C,C) is played in every period. The intuitive reason is

that play of (D,D) allows larger payments from the punished player to the pun-

isher than after play of (C,C). If d ≥ 2, there is a large incentive to deviate from

(C,C); the maximum possible payments after play of (C,C) are then so low that

it is better for the punisher to play (D,D) for one period and to get a relatively

large payment afterwards. The punisher then has no incentive to renegotiate the

punishment.

For a complete characterization of strong perfect equilibria, one can use Lemma

2 to get the parameter ranges for which (C,C), (D,C), and (C,D), respectively,

are admissible. It is clear that punishment profiles in a strong perfect equilibrium

must be (D,D) if S < 0 and (C,D) respectively (D,C) if S > 0. If (C,C)
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is admissible, Corollary 2 implies that strong perfect equilibria exist if and only

if d ≥ 2 − max(S, 0). For the case that (C,D) and (D,C) are admissible but

not (C,C), one finds that there always exist strong perfect contracts that play

(C,D) or (D,C) on the equilibrium path. If only (D,D) is admissible, the infinite

repetition of the stage game equilibrium is trivially strong perfect.

5 Weak and Strong Renegotiation-Proofness

5.1 Definitions and Main Results

Strong perfection is a very strict criterion; in a strong perfect equilibrium every

continuation payoff must survive comparison to all subgame perfect equilibria,

including those that are not renegotiation-proof themselves. In this section, we

analyze two concepts that only consider renegotiation to continuation equilibria

that are renegotiation-proof themselves, namely weak and strong renegotiation-

proofness defined by Farell andMaskin (1989). An equilibrium is weakly renegotiation-

proof if none of its own continuation equilibria is strictly Pareto dominated by an-

other continuation equilibrium. Strong renegotiation-proofness requires stability

against renegotiation to any weakly renegotiation-proof continuation equilibrium.

The formal definitions, allowing for renegotiation within a period, are as follows:

Definition 5 A SGP equilibrium σ is weakly renegotiation-proof (WRP), if for

no stage k there are two continuation payoffs u, u′ ∈ Uk(σ) such that u is strictly

Pareto-dominated by u′.

WRP equilibria always exist but the concept often does not have much restrict-

ing power. For example, it is always a WRP equilibrium to play in every period

the same Nash equilibrium of the stage game and to never conduct any payments.

Let ΣWRP denote the set of WRP equilibria and UkWRP =
⋃

σ ∈ΣWRP

Uk(σ) the

set of all WRP (continuation-)payoffs of stage k.

Definition 6 A WRP equilibrium σ is strongly renegotiation-proof (SRP) if for

no stage k and u ∈ Uk(σ) there exists another weakly renegotiation-proof payoff

u′ ∈ UkWRP (δ) such that u is strictly Pareto-dominated by u′.

It follows directly from this definition that the set of SRP payoffs is a subset of

the Pareto-frontier of all WRP payoffs, but in general the two sets do not coincide.
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In fact, for intermediate discount factors SRP equilibria often do not even exist.

In the following, we show that stationary contracts can be used to characterize

the Pareto-frontier of WRP payoffs and the set of SRP payoffs. The results are

derived for the case δ ≥ 1
2
, i.e. for the case that future payoffs have a larger weight

than present payoffs. We discuss the case δ < 1
2
afterwards.

For our characterization of the Pareto-frontier of WRP payoffs, we can restrict

our attention to the following regular stationary contracts:

Definition 7 A stationary contract σ with action structure (ae, a1, a2) is called

regular if it has maximal fines, and for both players i = 1, 2, G(ae) ≥ G(ai), and

either ci(a
i) < ci(a

e) or ai = ae.

Lemma 3 A regular stationary contract with action structure (ae, a1, a2) and equi-

librium payoffs ue is WRP if and only if for both players i = 1, 2

(1− δ)G(ai) + δG(ae)− ci(a
i) ≥ uej (11)

Lemma 3 states that for regular stationary contracts, weak renegotiation-proofness

is equivalent to the condition that the continuation payoff of the punishing player

j before player i’s punishment is not smaller than player j’s payoff at the play

stage on the equilibrium path.

In many examples, the stage game is symmetric and one wants to check weak

renegotiation-proofness for regular stationary contracts that have a symmetric

action structure (ae, a1, a2), i.e. ae1 = ae2, a
1
1 = a22 and a12 = a21. In this case

positive equilibrium payments pei are not necessary for subgame perfection or weak

renegotiation-proofness. Lemma 3 therefore implies that there exist WRP regular

stationary contracts with that action structure if and only if

(1− δ)G(a1)− c1(a
1) ≥ (1− 2δ) g1(a

e). (12)

Lemma 4 deals with the general case.

Lemma 4 If the set of regular stationary contracts with action structure (ae, a1, a2)

is non-empty, it contains WRP contracts if and only if for both player i = 1, 2

(1− δ)G(ai) + δG(ae)− ci(a
i) ≥ (1− δ)cj(a

e) + δcj(a
j) (WRP-i)

(1− δ)(G(a1) +G(a2)) + (2δ − 1)G(ae) ≥ c1(a
1) + c2(a

2). (WRP-Joint)
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If δ ≥ 1
2
, regular stationary contracts allow us to characterize the Pareto-frontier

of WRP payoffs:

Proposition 4 Let δ ≥ 1
2
. For every WRP equilibrium σ there exists a regular

WRP stationary contract with an action structure (ae, a1, a2) such that for all

u ∈ Uplay(σ): G(ae) ≥ u1+u2, ci(a
i) ≤ ui and G(a

i)(1−δ)+δG(ae)− ci(a
i) ≥ uj.

Every payoff on the Pareto frontier P(UpayWRP ) can be implemented by such a regular

WRP stationary contract.

We say an action profile âe is WRP-optimal if G(ae) ≥ U(σ) for all σ ∈ ΣWRP

and there exists a regular WRP stationary contract where âe is played on the equi-

librium path. Let uiSRP denote the infimum of player i’s payoffs in SRP equilibria,

if such equilibria exist.

Proposition 5 Let δ ≥ 1
2
. Every SRP payoff can be implemented by a stationary

contract with WRP-optimal equilibrium actions âe. The set of SRP payoffs is either

empty or given by the line from (u1SRP , G(â
e)− u1SRP ) to (G(â

e)− u2SRP , u
2
SRP ).

Proposition 5 is only helpful if we know whether SRP equilibria exist at all. We

have the following sufficient condition for an optimal WRP stationary contract to

be SRP:

Proposition 6 Let δ ≥ 1
2
. A regular WRP contract σ with WRP-optimal equilib-

rium action âe and punishment profiles a1, a2 is SRP if there is no regular WRP

stationary contract with an action structure (ãe, ã1, ã2) such that for one player

i ∈ {1, 2}

G(ãi)(1− δ) + δG(ãe)− ci(ã
i) > G(ai)(1− δ) + δG(ae)− ci(a

i). (13)

5.2 Remarks on the case δ < 1
2

If δ < 1
2
, condition (WRP-Joint) in Lemma 4 is relaxed for lower joint equilibrium

payoffs G(ae). This fact illustrates the two sided nature of weak renegotiation-

proofness: While one way to avoid renegotiation of punishments is to choose more

efficient punishments that guarantee the punisher a higher payoff than on the

equilibrium path, the other way is to choose sufficiently inefficient equilibrium

play.
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Since the other subgame perfection and WRP conditions require a sufficiently

large joint equilibrium payoff G(ae), it may be optimal to have a small degree of

inefficiency that requires to alternate between different action profiles. While for

δ ≥ 1
2
our results ensure that such alternation is not required to achieve Pareto-

optimal WRP or SRP payoffs, this does not generally hold true for δ < 1
2
.

For an example, assume the stage game is a Prisoners’ Dilemma with payoff

matrix
C D

C (1, 1) (− 6
10
, 11
10
)

D (11
10
,− 6

10
) (0, 0)

.

A stationary contract with ae = (C,C) exists whenever δ ≥ 1
11
, but in a regular

WRP stationary contract mutual cooperation can be sustained if and only if δ ≥ 1
3
,

where this critical discount factor is determined by condition (WRP-Joint). In

fact, it can be shown that for δ < 1
3
the only stationary contract that is WRP

repeats in every period the stage game equilibrium (D,D). However, for δ = 3
10

there exists a WRP equilibrium that alternates between (C,C) and (D,C) on the

equilibrium path.8

An alternative possibility to relax the WRP conditions is to extend the game

and stationary contracts by allowing players to burn money in payment stages.

Skipping any details, we simply note that for δ = 3
10

there would then exist a WRP

stationary contract with ae = (C,C) where each player burns 5
12

units of money in

every period on the equilibrium path. Since a requirement to burn money seems

at odds with any intuitive idea of renegotiation-proofness, we abstain from the

attempt to use stationary contracts with money burning for a characterization of

optimal WRP and SRP payoffs for δ < 1
2
.

8Consider the paths

Q0 = (p0, (C,C), pDC , (D,C), pCC , (C,C), pDC , (D,C), pCC , ...)

Qipay = (F i, (C,C), pDC , (D,C), pCC, (C,C), pDC, (D,C), pCC , ...)

Qiplay = (ai, pii, (C,C), p
DC , (D,C), pCC , (C,C), pDC , (D,C), pCC , ...)

with p0 = pDC = (0.6,−0.6), pCC = (0.823,−0.823), a1 = (C,D), a2 = (D,C), F i =
1−δ
1−δ2

(
1− δpDC1 + δd− δ2pCC1

)
and pii = F i + gi(a

i)
δ
. Let σ be a simple strategy profile where

play follows Q0 whenever there was no unilateral deviation in the past and (re-)starts with Qipay
(Qiplay) directly after any unilateral deviation of player i in play (pay) stage. It can be easily

checked that σ constitutes a WRP equilibrium for δ = 3
10 .
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In many other examples, the characterization of Section 5.1. extends also to

the case δ < 1
2
. Here are two helpful sufficient conditions.

Proposition 7 Let δ < 1
2
. If all action structures (ae, a1, a2) ∈ A3 that satisfy for

i = 1, 2 conditions (SGP-ae), (SGP-ae), (WRP-i), and G(ae) > G(ai) also satisfy

condition (WRP-Joint), then the results in Propositions 4, 5, 6 also apply for δ.

Proposition 8 There does not exist a WRP equilibrium with a joint equilibrium

payoff of U∗ or higher for any δ < 1
2
, if there exists no action structure (ae, a1, a2)

with G(ae) ≥ U∗ that fulfills conditions (SGP-ae), (SGP-ai), (WRP-i) and (WRP-

Joint) for some δ < 1
2
.

5.3 Example: Abreu’s simple Cournot Game

For a first example forWRP and SRP equilibria, recall Abreu’s Cournot game from

Section 3.3. Using Proposition 7, we find that the results of Proposition 4, 5 and 6

hold for all discount factors δ ≥ 0. Recall that collusive outcomes under subgame

perfection are sustained for the largest set of discount factors if a1 = (M,H) and

a2 = (H,M) are used as punishment. However, if weak renegotiation-proofness is

required, the more efficient punishments a1 = (L,H) and a2 = (H,L) can sustain

collusive play for a larger range of discount factors. Using this punishment, the

optimal regular WRP equilibria have the collusive equilibrium play ae = (L,L)

for all δ ≥ 1
3
and the partial collusive equilibrium play of ae = (M,L) for all

δ ∈ [ 4
13
, 1
3
). For δ < 4

13
, the only WRP stationary contract prescribes an infinite

repetition of the Nash equilibrium of the stage game. Using Proposition 6 we find

that these regular WRP equilibria are also SRP in the corresponding range of

discount factors. In contrast, stationary contracts with punishments a1 = (M,H)

and a2 = (H,M) are never SRP.9

Hence, we find that WRP and SRP restrict the set of possible punishment

profiles, and for δ ∈ [1
4
, 4
13
) also reduce the maximal achievable equilibrium payoffs.

9AWRP equilibrium with action structure ((L,L), (L,M), (M,L)) exists if and only if δ ≥ 9
19

and with action structure ((M,L), (L,M), (M,L)) if and only if δ ≥ 1
2 .
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5.4 Example: Prisoners’ Dilemma

First consider the case S ≤ 0. Using the results of Section 5.1, we find that SRP

equilibria always exist and that all of them use the punishment profiles a1 = a2 =

(D,D). For the implementation of cooperative equilibrium play ae = (C,C),WRP

and SRP tighten the original subgame perfection condition to δ ≥ max{1
2
, d−1
d
};

for smaller discount factors no equilibrium is WRP or SRP other than an infinite

repetition of the stage game equilibrium.

Assume S > 0. If δ ≤ min{d−S
d
, d−1
d
} only the Nash equilibrium of the stage

game be sustained as a subgame perfect equilibrium, which then trivially is SRP.

Otherwise the results of Section 5.1 allow us to characterize SRP equilibria only

for the case δ ≥ 1−S
2−S
. SRP equilibria then always exist, a SRP stationary contract

must punish with a1 = (C,D) and a2 = (D,C) and has optimal equilibrium

actions ae as characterized in Section 3.4.

5.5 Example: Bertrand competition with symmetric costs

We now investigate the case of a Bertrand duopoly with side payments. To have

a compact strategy space and well defined cheating payoffs, we assume that prices

ai are chosen from a finite gridM = {mε}mm=0, where ε > 0 measures the grid size

and m is a sufficiently large upper bound. Firm i’s profits are given by

gi(a) =





(ai − k)D(ai) if ai < aj

(ai − k)
D(ai)
2

if ai = aj

0 if ai > aj

,

where D(.) is a weakly decreasing, non-negative market demand function and k ∈

M denotes the constant marginal costs that are identical for both firms. Clearly,

marginal cost pricing is an optimal punishment for both firms. Furthermore, in

every stationary contract that yields an equilibrium price between marginal cost

and the monopoly price, it holds true that ci(a
e) = G(ae)− ψi(ε), where ψi(ε) is

some non-negative function that converges to 0 as ε→ 0.10

For the limit ε→ 0, condition (SGP-ae) implies that any such collusive price is

sustainable if and only if δ ≥ 1
2
. (Note that it does not matter whether both firms

10One may want to neglect ψi(ε) and simply approximate ci(a
e) ≈ G(ae). This would be

harmless as long as one studies subgame perfection, weak or strong renegotiation-proofness.

However, with this approximation Corollary 2 would suggest that every subgame perfect payoff

can be achieved by a strong perfect stationary contract, which is not the case.
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supply the market equally or only one firm supplies the market and compensates

the other firm.).

A discount factor of 1
2
is also the minimal discount factor to sustain collusive

prices as a subgame perfect equilibrium in a Bertrand duopoly without side pay-

ments, i.e. if only subgame perfection is considered this result may suggest that

side-payments do not facilitate collusion. However, Lemma 4 implies that for all

δ ≥ 1
2
these collusive prices can also be sustained by a weakly renegotiation-proof

stationary contract. Moreover, using Proposition 6, one can establish that the

monopoly price can be sustained even by a strongly renegotiation-proof station-

ary contract that uses maximal fines and marginal cost pricing as punishment.11

For a Bertrand duopoly without side payments, Farell and Maskin (1989) es-

tablish that only marginal cost pricing can be sustained in a WRP equilibrium in

pure strategies. Based on this result, McCutcheon (1997) argues that small fines

on meetings where prices are discussed can facilitate collusion, since renegotiation

becomes harder. Although for very large discount factors, collusive outcomes can

be sustained as a WRP equilibrium if one allows for mixed strategies (Farell and

Maskin, 1989) or if prices must be choosen from a sufficiently coarse grid (Ander-

sson and Wengström, 2007), the possibility for renegotiation-proof collusion for

intermediate discount factors is generally reduced if WRP is required. Our exam-

ple shows that with side payments, neither weak or strong renegotiation-proofness

restricts the set of discount factors for which perfect collusion is possible. Thus,

while the effect of meetings in smoke filled rooms on collusion may be ambiguous,

this result makes clear that collusion is facilitated if participants of such meetings

can easily swap briefcases filled with cash.

5.6 Example: Bertrand competition with asymmetric costs

Miklos-Thal (2008) shows that cost asymmetries facilitate the existence of collusive

subgame perfect equilibria in repeated Bertrand competition if side payments are

possible. We use our general characterization to replicate her results for a Bertrand

duopoly and then show that weak renegotiation-proofness does not restrict the set

of equilibrium payoffs.

11To see this, note that for δ ≥ 1
2 and sufficiently small ε the expression (1− δ)G(ãi)− ci(ã

i)

is non-positive for all ãi ∈ A, and for marginal cost pricing this expression is zero. Hence there

can exist no WRP stationary contract where the left hand side of the condition in Proposition

6 is strictly bigger than the right hand side.
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There are two firms i = 1, 2 with constant marginal cost k1 and k2 with k1 < k2.

We will characterize optimal subgame perfect and WRP contracts for the game

considering the limit of continuous payments ε→ 0.

Let π1(a1) = (a1−k1)D(a1) denote firm i’s profits if it serves the whole market

at a price a1. As punishment profiles we choose ai = (ki, ki+ ε), which guarantees

a cheating payoff of ci(a
i) ≈ 0 to the punished firm. In the punishment of firm

2, firm 1 it gets a positive profit of π1(k2), while firm 2 makes zero profits in the

punishment of firm 1.

It follows from condition (SGP-ae) that collusion is easiest to sustain if the low

cost firm 1 supplies the whole market and compensates the high cost firm 2 with

side-payments.12 We consider equilibrium action profiles ae = (ae1, a
e
1+ε) where a

e
1

is a price above firm 1’s marginal cost and weakly below firm 1’s monopoly price.

For small ε, corresponding cheating payoffs for firm 1 and 2 are c1(a
e) = π1(a

e
1)

and c2(a
e) ≈ φ(ae1)π1(a

e
1) where φ(a

e
1) ≡

ae
1
−k2

ae
1
−k1

is the ratio of firm 2’s markup to

firm 1’s markup. Condition (SGP-ae) thus implies that an equilibrium price ae1 is

sustainable if and only if

δ ≥
φ(ae1)

1 + φ(ae1)
. (14)

Since φ(ae1) < 1, this critical discount factors is smaller 1
2
, which means cost asym-

metries indeed facilitate collusion. Moreover, since φ is continuous and φ(k2) = 0

some collusive markup above k2 can be sustained for every discount factor δ > 0.

Such contracts are also always weakly renegotiation-proof. The WRP condition

(WRP-i) for firm 1 turns out to be directly equivalent to the subgame perfection

condition (14). Condition (WRP-Joint) and condition (WRP-i) for firm 2 coincide

and become

δ ≥
π1(a

e
1)− π1(k2)

2π1 (ae1)− π1(k2)
. (15)

For a completely inelastic demand function D(.), condition (15) is identical to the

subgame perfection condition (14) and since D(.) is weakly decreasing, condition

(15) is weaker than condition (14).

12Joint payoffs G are maximized if firm 1 conducts the whole production. Since cheating

payoffs result from marginally undercutting the equilibrium price, they do not depend on who

serves the market (at least not in the limit of continuous prices ε→ 0).
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6 Summary

We have shown that Pareto optimal subgame perfect payoffs and renegotiation-

proof payoffs can generally be found by restricting attention to a simple class of

stationary contracts. These stationary contracts prescribe play of the same action

profile in every period on the equilibrium path, and punishments never last longer

than one period, after which equilibrium play resumes. While it is not surprising

that one can restrict attention to equilibria with a stationary structure, the first

part of our paper contributes to the existing literature by establishing simple

conditions that allow an easy characterization of the Pareto-frontier of subgame

perfect payoffs for all discount factors in general two player stage games with side

payments.

In the second part of the paper, we compared and characterized different con-

cepts of renegotiation-proofness for intermediate discount factors. First we es-

tablished that if renegotiation-proofness can take place only before the payment

stage, every Pareto optimal subgame perfect payoff can always be implemented

in a renegotiation-proof way. Then we assumed renegotiation is possible at all

stages, and used stationary contracts to characterize strong perfect payoffs. We

derived simply conditions to check for the existence of strong perfect equilib-

ria. Afterwards, we investigated the less restrictive concepts of weak and strong

renegotiation-proofness. While in many examples, Pareto-optimal subgame per-

fect payoffs can be implemented as WRP or even SRP equilibria, this is not always

the case: Pareto-optimal subgame perfect equilibria that rely on very inefficient

punishments can fail to be renegotiation-proof. In general, optimal WRP equilib-

ria may require a fine-tuned degree of inefficiency on the equilibrium path that can

be achieved by alternating between different action profiles, or by burning money

on the equilibrium path. If δ ≥ 1
2
or another sufficient condition holds, we have

shown that such contractual features will never be necessary to achieve optimal

WRP or SRP payoffs.

References

Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discount-

ing," Econometrica, 1988, 56, 383-396.

Andersson, Ola and Erik Wengström, 2007. "A Note on Renegotiation in Re-

28



peated Bertrand Duopolies," Economics Letters, 95(3), 398-401.

Baker, George, Robert Gibbons, and Kevin J. Murphy, 2002. "Relational Con-

tracts and the Theory of the Firm," The Quarterly Journal of Economics,

2, 39-84.

Baliga, Sandeep and Robert Evans, 2000. "Renegotiation in Repeated Games

with Side-Payments," Games and Economic Behavior, 33, 159-176.

Bernheim, Douglas B. and Debraj Ray, 1989. "Collective Dynamic Consistency

in Repeated Games," Games and Economic Behavior, 1(4), 295-326.

Blonski, Matthias and Giancarlo Spagnolo, 2002. "Relational Contracts and

Property Rights," CEPR Discussion Paper 3460.

Doornik, Katherine, 2006. "Relational contracting in partnerships," Journal of

Economics & Management Strategy, 15(2), 517—548.

Fong, Yuk-fai and Jay Surti, 2009, "On the Optimal Degree of Cooperation in the

Repeated Prisoner’s Dilemma with Side Payments," Games and Economic

Behavior (forthcoming).

Farrell, Joseph and Eric Maskin, 1989. "Renegotiation in Repeated Games,"

Games and Economic Behavior, 1(4), 327-360.

Harrington, Joseph E., 2006. "How do Cartels Operate?," The Johns Hopkins

University Economics Working Paper Archive (531).

Harrington, Joseph E. and Andrzej Skrzypacz, 2007 "Collusion with Monitoring

of Sales," RAND Journal of Economics, 2007, 38(2), 314-331.

Levin, Jonathan, 2003. "Relational Incentive Contracts," American Economic

Review, 93, 835-857.

McCutcheon, Barbara, 1997. "Do Meetings in Smoke-Filled Rooms Facilitate

Collusion?", Journal of Political Economy, 105(2), 330-350.

Miklos-Thal, Jeanine, 2008. "Optimal Collusion under Cost Asymmetry," mimeo.

Rubinstein, Ariel, 1980. "Strong perfect equilibrium in supergames", Interna-

tional Journal of Game Theory, 9(1), 1-12.

29



Appendix: Proofs

Lemma 1: There exists a stationary contract with action structure (ae, a1, a2) if

and only if

G(ae) ≥ (1− δ)(c1(a
e) + c2(a

e)) + δ(c1(a
1) + c2(a

2)) (SGP-ae)

and for both players i = 1, 2

(1− δ)G(ai) + δG(ae)− ci(a
i) ≥ (1− δ)cj(a

i) + δcj(a
j). (SGP-ai)

Proof of Lemma 1: We are interested in finding conditions on ae, a1, a2 that

make it possible to define the equilibrium transfer pe and fines F 1 and F 2 such

that conditions (6), (4), (5) for subgame perfection are fulfilled. Note that there

are three conditions that bound uii, i = 1, 2 from above but only condition (4)

bounds it from below. Therefore, these conditions hold for some uii if and only

if they hold for the lowest possible punishment payoffs uii = ci(a
i), which are

achieved by maximal fines.

Equilibrium transfers pe then only appear in the conditions (6):

gi(a
e)− δpei ≥ ci(a

e)(1− δ) + δci(a
i) for i ∈ {1, 2}

Choosing δpe1 = g1(a
e)− c1(a

e)(1− δ)− δc1(a
1), these conditions bind exactly

for player 1, and the condition for player 2 becomes condition (SGP-ae).�

Proposition 1: An optimal action profile ae and strongest punishments ā1, ā2

always exist. The Pareto-frontier of subgame perfect payoffs is linear and can be

implemented by stationary contracts with action structure (ae, a1, a2) and maximal

fines.

Proof of Proposition 1: Consider three sequences of subgame perfect equilibria

(σe(n), σ1(n), σ2(n))n∈N with U(σe(n))→ USGP and ui(σ
i(n))→ uiSGP . Let a

k(n)

be the first action profile on the equilibrium path of σk(n) for k ∈ {e, 1, 2}. Then

ak(n) is a sequence in the compact set A, and as such must have convergent subse-

quences with limits in A. We assume w.l.o.g. that these convergent subsequences

are already given by ak(n) and denote their limits by āe, ā1 and ā2, respectively. In

the following we use the properties of σe(n), σ1(n), σ2(n) to make inferences about

āe, ā1 and ā2. First, if we decompose σe(n) into current play and future payoff, we

have that

U(σe(n)) ≤ (1− δ)G(ae(n)) + δUSGP . (16)
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Since G is continuous, taking the limit n→∞ yields

USGP ≤ G(ā
e). (17)

Second, subgame perfection of σi(n) implies

ui(σ
i(n)) ≥ (1− δ)ci(a

i(n)) + δuiSGP . (18)

Since ci is continuous, taking the limit n→∞ yields

uiSGP ≥ ci(ā
i). (19)

Third, summing up the subgame perfection conditions of players 1 and 2 for σe(n)

yields

USGP ≥ (1− δ) (c1(a
e(n)) + c2(a

e(n))) + δ(u1SGP + u
2
SGP ). (20)

In the limit, and using (17) and (19), this becomes

G(āe) ≥ (1− δ) (c1(ā
e) + c2(ā

e)) + δ(c1(ā
1) + c2(ā

2)). (21)

Last, we exploit the subgame perfection condition

uj(σ
i(n)) ≥ cj(a

i(n))(1− δ) + δujSGP (22)

as well as

G(ai(n))(1− δ) + δUSGP ≥ U(σ
i(n))

to get

G(ai(n))(1− δ) + δUSGP − u
i
SGP ≥ cj(a

i(n))(1− δ) + δujSGP . (23)

In the limit, and using (17) and (19), this becomes

G(āi)(1− δ) + δG(āe)− ci(ā
i) ≥ cj(ā

i)(1− δ) + δcj(ā
j). (24)

Equations (21) and (24) together with Lemma 1 now tell us that there is a sta-

tionary contract with action structure (āe, a1, a2), with joint payoff G(āe) = USGP

and punishment payoffs ci(ā
i) = uiSGP , i.e. ā

e is an optimal action profile and

āi are optimal punishments. Recall from Remark 1 that different up-front pay-

ment can be used to achieve all payoffs on the line between (c1(ā
1), G(āe)−c1(ā

1))

and (G(āe) − c2(ā
2), c2(ā

2)). Since player i will never get a lower payoff than
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ci(ā
i) = uiSGP in any SGP equilibrium, this line constitutes the Pareto-frontier of

SGP payoffs. �

Proposition 2: Every strong perfect payoff can be implemented by a stationary

contract with optimal equilibrium actions āe. The set of strong perfect payoffs is

either empty or given by the line from (u1SP , G(ā
e)− u1SP ) to (G(ā

e)− u2SP , u
2
SP ).

Proof of Proposition 2: Assume that a strong perfect equilibrium exists. It is

easy to verify that players’ lowest strong perfect continuation payoffs before play

and pay stage coincide, i.e. uiSP = inf
u∈U

play

SP

ui = infu∈UpaySP
ui. For both player

i = 1, 2, let ūi be a tuple in the closure of U
play

SP with ūii = u
i
SP . Since punishments

with continuation payoffs ūii must be able to sustain at least one optimal action

profile āe, it must hold that

G(āe) ≥ (c1(ā
e) + c2(ā

e)) (1− δ) + δ(ū11 + ū
2
2). (25)

By similar steps as in the proof of Proposition 1, we find that for both player

i = 1, 2 there must exist ai ∈ A with ūii ≥ ci(a
i) and

G(ai)(1− δ) + δG(āe)− ūii ≥ ū
i
j ≥ cj(a

i)(1− δ) + δūjj . (26)

Using similar steps than in the proof of Lemma 1, we find that conditions (25)

and (26) imply that there must exist a stationary contract σ with action structure

(āe, a1, a2) and punishment payoffs ū11 and ū22. In this stationary contract, all

continuation equilibria (at payment or play stage) either have total payoff USGP ,

or a continuation payoff of ui with uii = ū
i
i and u

i
j ≥ ū

i
j (the later follows from

condition (26)) Thus σ is strong perfect and the last sentence follows from remark

1.�

Lemma 2: An action profile ã is admissible if and only if

(1− δ)G(ã) + δG(ae) ≥ (1− δ)(c1(ã) + c2(ã)) + δ(c1(a
1) + c2(a

2)).

Proof of Lemma 2: We first prove neccesity. Let σ̃ be a subgame-perfect equilib-

rium in which ã is played in the first period. Let ũe and ũi denote the continuation

payoffs in the payment stage of period 2 after no deviation or a unilateral deviation

of player i, respectively. Subgame perfection requires

(1− δ)gi(ã) + δũ
e
i ≥ (1− δ)ci(a

e) + δũii for i = 1, 2

Summing up the two conditions yields

(1− δ)G(ã) + δ (ũe1 + ũ
e
2) ≥ (1− δ)(c1(a

e) + c2(a
e)) + δ(ũ11 + ũ

2
2).
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Since ũe1+ũ
e
2 ≤ G(a

e) and ũii ≥ ci(a
i) this condition can be fulfilled only if condition

(8) holds.

To proof sufficiency, we define extended stationary contracts. An extended sta-

tionary contract shall have the same structure as stationary contracts, with the

only exception that the initial path of play is given byQ0 = (p0, ã, p̃, ae, pe, ae, pe, ...),

i.e. equilibrium actions in the first period are ã instead of ae and the directly fol-

lowing payments are p̃ instead of pe. Consider an extended stationary contract

with first period action profile ã, optimal equilibrium actions ae, maximal fines

and strongest punishments ai and let payments pe1 and p̃1 be set such that the

incentives constraints not to deviate from ae and ã are exactly binding for player

1. Straightforward algebra then shows that no player has an incentive to deviate

from the extended stationary contract if condition (8) holds.�

Proposition 3: A stationary contract with action structure (āe, a1, a2) and

punishment payoffs u11 and u22 is strong perfect if and only if for both players

i = 1, 2 and for all admissible ã with G(ã) > G(ai) it holds that either

(1− δ)G(ai)− uii ≥ (1− δ) (G(ã)− ci(ã))− δci(ā
i) or (SP1)

uii ≥ (1− δ)(G(ã)− cj(ã)) + δG(ā
e)− δcj(ā

j) (SP2)

Proof of Proposition 3: First, we show that a stationary contract σ with action

structure (āe, a1, a2) and punishment payoffs u11 and u
2
2 is strong perfect given that

the conditions listed in the proposition hold. Clearly, continuation equilibria that

start in the payment stage or before play of ae cannot be Pareto-dominated. We

only have to show that no continuation equilibria in which a player is punished

in play stage is Pareto dominated. Assume to the contrary that there exists a

continuation equilibrium σ̃ ∈ ΣplaySGP that strictly Pareto-dominates the punishment

for player i. The first action ã of σ̃ is admissible and since G(ai)(1−δ)+δG(āe) <

U(σ̃) ≤ G(ã)(1 − δ) + δG(āe) it must hold that G(ã) > G(ai), hence either

inequality (SP1) or (SP2) holds. In the equilibrium σ̃ player j’s payoff is bounded

by the joint payoff U(σ̃) minus player i’s minimum payoff (1 − δ)ci(ã) + δu
i
SGP .

Hence, strict Pareto dominance of σ̃ implies that

(1− δ)G(ai) + δG(āe)− uii < uj(σ̃) ≤ (1− δ)G(ã) + δG(ā
e)− (1− δ)ci(ã)− δu

i
SGP

and

uii < ui(σ̃) ≤ G(ã)(1− δ) + δG(ā
e)− (1− δ)cj(ã)− δu

j
SGP ,
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which leads to a contradiction to the fact that either (SP1) or (SP2) has to hold.

Next we assume that σ is a strong perfect stationary contract with action

structure (āe, a1, a2) and punishment payoffs u11, u
2
2 and show that the conditions

stated in the proposition have to hold. Assume to the contrary that there exists

an admissible action profile ã with G(ã) > G(ai) and

(1− δ)G(ã)− (1− δ)ci(ã)− δu
i
SGP > (1− δ)G(a

i)− uii (27)

as well as

(1− δ)G(ã) + δG(āe)− (1− δ)cj(ã)− u
j
SGP > u

i
i. (28)

for some player i. Because ã is admissible, there exists an extended stationary

contract (see the proof of Lemma 2) with equilibrium path

Q̃ := (ã, p̃, āe, pe, āe, ....)

and the optimal penal codes as punishments for some payments p̃. Since G(ã) >

G(ai), this equilibrium has a higher joint payoff than the continuation payoff of

our stationary contract σ at the punishment of player i in play stage. Moreover,

conditions (27) and (28) then imply that payments after play of ã can be chosen

such that each player gets strictly more than in that punishment phase of σ, i.e.

σ is not strong perfect.�

Corollary 2: A stationary contract with optimal strongest punishments

ā1, ā2, maximal fines and optimal equilibrium actions is strong perfect if and only

if for all admissible action profiles ã and both players i = 1, 2

G(āi)− ci(ā
i) ≥ G(ã)− ci(ã).

Proof of Corollary 2: Assume first that there is an admissible action profile ã

and a player i ∈ {1, 2} such that G(āi)−ci(ā
i) < G(ã)−ci(ã). Since ci(ā

i) ≤ ci(ã),

it must hold that G(ã) > G(āi). Condition (SP1) of Prop. 3 takes the form

G(ã) − ci(ã) ≤ G(āi) − ci(ā
i) and therefore does not hold. Condition (SP2),

together with admissibility of ã, implies that

ci(ã)(1− δ) + δci(ā
i) ≤ G(ã)(1− δ) + δG(ae)− cj(ã)(1− δ)− δcj(ā

j) ≤ ci(ā
i).

This could only be true if ci(ã) = ci(ā
i), but then G(ã) > G(āi) contradicts the

fact that āi is an optimal strongest punishment.

To show sufficiency, assume that for all admissible action profiles ã and both

players i = 1, 2 condition (9) holds. Then condition (9) in particular holds for
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all admissible action profiles ã for which G(ã) > G(āi) and condition (SP1) of

Proposition 3 is true.�

Corollary 3: There exists no strong perfect stationary contract with action

structure (āe, a1, a2) if for both players i = 1, 2 we have G(āe) > G(ai) and

(1− δ) (G(āe)− ci(ā
e))− δci(ā

i) > (1− δ)G(ai)− ci(a
i).

Proof of Corollary 3: For a proof by contradiction, assume that there is a strong

perfect stationary contract σ with action structure (āe, a1, a2) and punishment

payoffs u11 and u22 such that for both players i = 1, 2 condition (10) holds and

G(āe) > G(ai). We consider Proposition 3 for ã = āe. Condition (SP1) does

not hold for any player i = 1, 2. Therefore, condition (SP2) must hold for both

players, and in sum these conditions imply that u11 + u
2
2 ≥ G(ā

e). This can only

be fulfilled if u11 + u
2
2 = G(ā

e), and in this case the condition also implies that

G(āe) = c1(ā
1) + c2(ā

2). This means that P(UpaySGP ) and P(U
play
SGP ) consist of just

one point with joint payoff USGP , hence P(U
play
SGP ) does not contain the punishment

payoff in σ, which cannot be strong perfect. �

Lemma 3: A regular stationary contract with action structure (ae, a1, a2) and

equilibrium payoffs ue is WRP if and only if for both players i = 1, 2

(1− δ)G(ai) + δG(ae)− ci(a
i) ≥ uej (29)

Proof of Lemma 3: Let σ be a WRP regular stationary contract with action

structure (ae, a1, a2) and equilibrium payoffs ue. If (1−δ)G(ai)+δG(ae)−ci(a
i) <

uej, then it must hold that ci(a
i) ≥ uei , i.e., ci(a

i) ≥ ci(a
e). This implies ai =

ae and therefore G(ai) + δG(ae) − ci(a
i) = G(ae) − ci(a

e) ≥ G(ae) − uei = uej.

Next, assume that for an action structure (ae, a1, a2) and equilibrium payoff ue

inequality (11) holds. Since G(ae) ≥ G(ai) this implies that the payoff when player

i is punished and the equilibrium payoff ue cannot be Pareto-ranked. Moreover,

(1 − δ)G(ai) + δG(ae) − ci(a
i) ≥ uej ≥ ci(a

i), and therefore the two punishments

cannot be Pareto-ranked, either.�

Lemma 4: If the set of regular stationary contracts with action structure

(ae, a1, a2) is non-empty, it contains WRP contracts if and only if for both player

i = 1, 2

(1− δ)G(ai) + δG(ae)− ci(a
i) ≥ (1− δ)cj(a

e) + δcj(a
j) (WRP-i)

(1− δ)(G(a1) +G(a2)) + (2δ − 1)G(ae) ≥ c1(a
1) + c2(a

2). (WRP-Joint)
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Proof of Lemma 4: Conditions (WRP-i) and (WRP-Joint) follow from condi-

tion 11 and subgame perfection. For the other direction, assume there exists reg-

ular stationary contract with action structure (ae, a1, a2), which fulfills (WRP-i)

and (WRP-Joint). These conditions and the subgame perfection conditions imply

that there exist net-payments pe such that

G(ae)− (1− δ)c2(a
e)− δc2(a

2) ≥ g1(a
e)− pe1 ≥ c1(a

e)(1− δ) + δc1(a
1),

(1− δ)G(a2) + δG(ae)− c2(a
2) ≥ g1(a

e)− pe1 ≥ (1− δ)(G(a
e)−G(a1))− c1(a

1).

Using these inequalities, Lemma 1, and Lemma 4, it is easy to verify that a WRP

regular stationary contract σ with action structure (ae, a1, a2) and equilibrium

payments pe exists.�

Proposition 4: Let δ ≥ 1
2
. For every WRP equilibrium σ there exists a regular

WRP stationary contract with an action structure (ae, a1, a2) such that for all

u ∈ Uplay(σ): G(ae) ≥ u1+u2, ci(a
i) ≤ ui and G(a

i)(1−δ)+δG(ae)−ci(a
i) ≥ uj.

Every payoff on the Pareto frontier P (UpayWRP ) can be implemented by such a regular

WRP stationary contract.

Proof of Proposition 4: Let σ be anyWRP equilibrium and let Ū = supu∈Uplay(σ) u1+

u2, and ū
i
i = infu∈Uplay(σ) ui. We take (ūe1, ū

e
2) to be a payoff tuple in the closure of

Uplay(σ) such that ūe1 + ū
e
2 = Ū . Similarly, (ūi1, ū

i
2) shall be a tuple in the closure

of Uplay(σ) such that among all such tuples that have the payoff ūii for player i,

player j’s payoff is maximized. We then have that ūii ≤ ui and ū
i
j ≥ uj for all

u ∈ Uplay(σ). Let u(σ|he(n)) be a sequence in Uplay(σ) with limit (ūe1, ū
e
2) and for

i = 1, 2 let u(σ|hi(n)) be a sequence with limit (ūi1, ū
i
2). Let furthermore ak(n)

be the w.l.o.g. convergent sequences of the first action profiles of the continua-

tion equilibria σ|hk(n), k ∈ {e, 1, 2}. Completely analogous to the SGP case (see

the proof of Proposition 1) we have for the limits of these sequences, denoted by

ae, a1, a2, that G(ae) ≥ Ū , ci(a
i) ≤ ūii,

Ū ≥ (c1(a
e) + c2(a

e))(1− δ) + δ(ū11 + ū
2
2),

G(ai)(1− δ) + δŪ − ūii ≥ ū
i
j ≥ cj(a

i)(1− δ) + δūjj for i �= j ∈ {1, 2}.

as well as

G(ai)(1− δ) + δŪ − ci(a
i) ≥ ūej ≥ cj(a

e)(1− δ) + δcj(a
j),

which also implies

(G(a1) +G(a2))(1− δ) + 2δŪ − c1(a
1)− c2(a

2) ≥ Ū .
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Since we assumed that δ ≥ 1
2
, these conditions are relaxed if we replace Ū by

G(ae). Next, define ãe ∈ {ae, a1, a2} such that G(ãe) = max{G(ae), G(a1), G(a2)},

and ãi = ai if ci(a
i) < ci(ã

e) and ãi = ãe else. It is straightforward to show that

all conditions still hold:

G(ãe) ≥ (1− δ)(c1(ã
e) + c2(ã

e)) + δ(c1(ã
1) + c2(ã

2)),

G(ãi)(1− δ) + δG(ãe)− ci(ã
i) ≥ max(cj(ã

e), cj(ã
i))(1− δ) + δcj(ã

j),

and

(G(ã1) +G(ã2))(1− δ) + 2δG(ãe)− (c1(ã
1) + c2(ã

2)) ≥ G(ãe).

Because of Lemma 4 there is a WRP regular stationary contract σ(ãe, ã1, ã2) with

properties as stated in the first part of proposition. It follows that for any WRP

payoff u(σ), σ ∈ ΣpayWRP there is a stationary contract that weakly Pareto dominates

it, which then implies the last sentence of the proposition.

Proposition 5: Let δ ≥ 1
2
. Every SRP payoff can be implemented by a sta-

tionary contract with WRP-optimal equilibrium actions âe. The set of SRP pay-

offs is either empty or given by the line from (u1SRP , G(â
e) − u1SRP ) to (G(âe) −

u2SRP , u
2
SRP ).

Proof of Proposition 5: Since no payoff in UplaySRP Pareto dominates the other,

one can show as in the WRP case that there exists a WRP stationary contract

σ with action structure (ae, a1, a2) such that G(ae) ≥ u1 + u2, ci(a
i) ≤ ui, and

G(ai)(1−δ)+δG(ae)−ci(a
i) ≥ uj for all u ∈ U

play
SRP . Since σ cannot Pareto dominate

the SRP equilibria it follows that G(ae) = max
u∈Uplay

SRP
{u1+u2}. Because the worst

SRP payoffs must be able to sustain ae it follows that there is a SRP equilibrium

with action structure (ae, a1, a2) and punishment payoffs uii = minu∈Uplay
SRP
ui. �

Proposition 6: Let δ ≥ 1
2
. A regular WRP contract σ with WRP-optimal

equilibrium action âe and punishment profiles a1, a2 is SRP if there is no regular

WRP stationary contract with an action structure (ãe, ã1, ã2) such that for one

player i ∈ {1, 2}

G(ãi)(1− δ) + δG(ãe)− ci(ã
i) > G(ai)(1− δ) + δG(ae)− ci(a

i). (30)

Proof of Proposition 6: Assume that σ is not SRP. Since σ is an optimal WRP

stationary contract, it can only be dominated in the punishment phase, that is,

there must be i ∈ {1, 2} and a WRP equilibrium σ̃ such that ui(σ̃|h) > ci(a
i) and

for j = 3− i

uj(σ̃|h) > G(a
i)(1− δ) + δG(ae)− ci(a

i)
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for some h ∈ Hplay. Because of Prop. 4 there exists a regular WRP stationary

contract with action structure (ãe, ã1, ã2) that fulfills

G(ãi)(1− δ) + δG(ãe)− ci(ã
i) ≥ uj(σ̃|h).

�

Proposition 7: Let δ < 1
2
. If all action structures (ae, a1, a2) ∈ A3 that satisfy

for i = 1, 2 conditions (SGP-ae), (SGP-ai), (WRP-i), and G(ae) ≥ G(ai) also

satisfy condition (WRP-Joint), then the results in Propositions 4, 5, 6 also apply

for δ.

Proof of Proposition 7:This result follows immediately because Propositions 5

and 6 assume that δ ≥ 1
2
only because they rely on Proposition 4. It is obvious

from its proof that Proposition 4 also holds for δ < 1
2
if the joint WRP condition

(WRP-Joint) is implied by the other conditions.�

Proposition 8: There does not exist a WRP equilibrium with a joint equilib-

rium payoff of U∗, if there exists no action structure (ae, a1, a2) with G(ae) ≥ U∗

that fulfills conditions (SGP-ae), (SGP-a i), (WRP-i) and

(G(a1) +G(a2))(1− δ) + 2δU∗ − c1(a
1)− c2(a

2) ≥ U∗.

.

Proof of Proposition 8: Straightforward, given the proof of Proposition 4.�
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