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Abstract

This paper analyzes bilateral contracting in an environment with contractual in-

completeness and asymmetric information. One party (the seller) makes an unverifiable

quality choice and the other party (the buyer) has private information about its valu-

ation. A simple exit option contract, which allows the buyer to refuse trade, achieves

the first–best in the benchmark cases where either quality is verifiable or the buyer’s

valuation is public information. But, when unverifiable and asymmetric information

are combined, exit options induce inefficient pooling and lead to a particularly simple

contract. Inefficient pooling is unavoidable also under the most general form of con-

tracts, which make trade conditional on the exchange of messages between the parties.

Indeed, simple exit option contracts are optimal if random mechanisms are ruled out.
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1 Introduction

This paper analyzes bilateral contracting in environments with two potential contracting

imperfections: one party has to take a decision which is publicly not verifiable, and the other

party receives decision relevant private information. The environment is thus characterized

by contractual incompleteness and asymmetric information. The parties’ contracting problem

is to provide incentives both for the informed party to reveal its private information and for

the other party not to abuse its discretion that arises due to the lack of verifiability.

The existing literature provides core insights on what contracting can achieve if only

one of the two imperfections, either non–verifiability or asymmetric information, prevails.

The literature on implementation under complete information (Maskin (1977), Moore and

Repullo (1988)) has studied the extent to which contracting can overcome problems caused

by non-verifiable information, while the Revelation Principle (Myerson (1979)) represents

the key tool to describe the set of implementable outcomes in the presence of asymmetric

information. Yet little is known about how contracting is affected by the combination of

unverifiable and asymmetric information. This paper presents a step in this direction.

We consider a model with a seller who has to make a non–verifiable quality choice and a

buyer whose valuation for quality is his private information. There is a continuum of buyer

types and the efficient level of quality is a strictly increasing function of the buyer’s type.

Quality is publicly not verifiable (neither ex ante nor ex post), but we assume that it is

observable by the buyer. Consequently, quality cannot be legally enforced and so the seller

has only imperfect commitment.

To focus on the interaction between non–verifiability and asymmetric information, we

consider an environment in which the buyer learns his information only after contracting

has been completed. This implies that first–best efficiency can be attained in either of the

two benchmark cases in which merely one of the imperfections is present. Indeed, in the

benchmark cases, first–best efficiency can be attained by an exit option contract which gives

the buyer the right, after having observed the seller’s quality choice, to refuse or accept to

trade at a pre–specified price.1

1It is well–known from the incomplete contracts literature that contracts with pre–specified default options

can resolve obstacles that arise from non–verifiability. See, e.g., Chung (1991), Aghion, Dewatripont and Rey

(1994), Nöldeke and Schmidt (1995), Edlin and Reichelstein (1996), Evans (2008). Option contracts are

frequently observed in practice. For example, almost all labor contracts give the employee the right to quit.

Also, certain financial contracts such as convertible bond securities can be interpreted as exit option contracts.
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Our first insight is that exit option contracts are no longer efficient when non–verifiability

and asymmetric information are combined. In fact, we demonstrate that exit options can

implement at most a single positive level of quality and can sort buyer types in at most two

groups: low valuation types will not trade the good, and high buyer types will trade the

same quality of the good. Thus, while first–best efficiency calls for a perfect sorting of types,

pooling of buyers is unavoidable under exit option contracts.

Our second insight is that this result qualitatively extends to the most general form of

contracting when the terms of trade can be made conditional on the exchange of messages

between the parties and trade is allowed to be random. Even if there are no restrictions

on the parties’ contracting possibilities, first–best efficiency is not attainable because partial

pooling of types is unavoidable. In light of our benchmark cases, the efficiency loss can be

attributed exclusively to the concurrence of non–verifiability and asymmetric information.

In practice, contracts that prescribe trade to be random are questionable with regard to

their legal enforceability. This raises the issue of what can be achieved by general mechanisms

with deterministic trade. Our third insight is that if random trade is ruled out, then in fact

allowing for more general message games does not generate an efficiency gain over the use of

simple exit option contracts. This result may provide a rationale for why observed contracts

are often simple. Notice that the efficient exit option contract of the benchmark cases is more

complex than the exit option contract in the general environment to the extent that the former

implements a continuum of qualities, each one fine–tuned to the buyer’s valuation, whereas

the latter implements only a single positive quality level. In this sense, as the contracting

environment becomes more complex, the resulting contractual arrangement actually becomes

simpler.

Finally, we characterize the optimal exit option contract. Since only a single quality level

can be implemented under an exit option contract, the optimal contract can be derived from

a straightforward maximization problem, which represents a substantial simplification of the

seller’s original mechanism design problem.

To understand why lack of verifiability and asymmetric information prevent efficiency,

it is useful to understand why efficient exit options can be designed in our two benchmark

cases. If the buyer’s valuation is public information, the efficient exit option leaves the buyer

indifferent between exit and trade at the efficient quality level. This induces the seller to

choose the efficient quality since a downward deviation would trigger the buyer to exit, leaving

the seller without sales. In contrast, when information is private and the seller can commit

2



to quality, the standard revelation principle is applicable, and a contract specifies a quality

contingent on (a report about) the buyer’s type. Incentive compatibility then requires that

higher buyer types obtain a higher utility ex post since otherwise they would have incentives

to mimic lower types. This, in turn, implies that higher buyer types must strictly prefer trade

over exit for otherwise low types could achieve the same utility as high types by claiming to

be a high type and then simply exiting.

Therefore, there is a tension between providing first–best incentives jointly for the seller

and the buyer. While limited commitment by the seller requires all buyer types to be in-

different between trade and exit, incentive compatibility requires (almost all) buyer types to

prefer trade over exit. Thus, the constraints that arise from limited commitment and private

information cannot be met jointly by an exit option contract without violating efficiency.

To characterize the set of feasible exit option contracts under asymmetric information,

we allow the buyer to provide information about the realization of his valuation. After

having privately observed his type, the buyer sends a verifiable message to the seller who

then selects a quality level. Since quality is non–verifiable, we cannot appeal to the standard

Revelation Principle and, instead, allow for general, not only direct, communication. Two

forces drive the fact that not more than a single positive quality level can be implemented.

First, refusing to trade has the same value for any buyer type. Second, the seller’s limited

commitment implies that for any positive quality level that is implemented in equilibrium,

there must be some type who is indifferent between refusing and accepting trade at this

quality level. Thus, if two positive quality levels are implemented, the lower of the two

indifferent types could attain the same utility as the higher one by announcing the respective

message and then exit. But this would contradict the incentive compatibility requirement

that lower types get a lower utility than higher types in equilibrium.

A similar force drives the result that first–best efficiency can also not be attained under

the most general form of contracting. Notice that exit options limit the communication

between the parties after the seller has chosen quality to a ‘trade’– or ‘exit’–message by the

buyer. In addition, they restrict the probability of trade to be either one or zero. We therefore

remove these restrictions by considering contracts that condition the possibly random trading

outcome on arbitrary forms of verifiable communication, which takes place after the buyer

has announced an initial message about his private information and the seller’s quality choice

has been observed.

To induce the seller to choose first–best quality, the contract needs to endow the buyer

with a credible “exit threat” that deters the seller not to deviate from the first–best quality.
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Efficiency requires that in equilibrium no buyer makes use of his threat. Moreover, for the

threat to be credible the buyer must be indifferent between what he gets in equilibrium and

what he would get did he enforce the threat. But similarly as in the case of exit option

contracts, it would then become attractive for low buyer types to claim to be of a high type

and then exert the threat.

The key difference between an exit option and the general contract is that when the buyer

were to exert the exit threat under the general contract, trade can still occur with positive

probability. But, low buyer types attach lower value to such a random exit threat than

high buyer types. Thus, letting high types trade with positive probability upon exerting the

exit threat provides a force, imperfect though, to prevent low types from mimicking high

types and then exerting the threat. However, when trade is deterministic, the possibility of

a random exit threat is removed and we are back in the exit option case. Therefore, general

contracts do not improve upon simple exit option contracts when only deterministic trade is

contractible.

Related Literature

This paper contributes to the literature by combining implementation under complete and

incomplete information, which the existing literature largely treats as separate domains. The

basic idea of implementation under complete information is that the information that the

parties commonly observe can be reflected in verifiable messages to a third party.2 A contract

may therefore specify an outcome as a function of such messages and thus provide appropriate

incentives for parties to select non–verifiable actions ex ante. Indeed, the efficient exit option

mechanism of our first benchmark case in which the buyer’s valuation is public information

is an example of a sequential mechanism in the spirit of subgame perfect implementation

(cf. Che and Hausch (1999), Proposition 1). However, in an environment in which there

is not only non–verifiable but also asymmetric information at the communication stage, we

cannot apply implementation results that rely on complete information. Instead, we study

which trading outcomes can be implemented as a Bayesian Nash equilibrium after the seller

has chosen quality. In the spirit of Maskin (1977), we require strong implementation and

demonstrate that the combination of private and unverifiable information severely restricts

the range of implementable outcomes. Importantly, since we assume contracting to take place

under symmetric information, the first–best can be achieved in our other benchmark case in

which quality is verifiable. Therefore, our inefficiency result does not originate simply in the

2See the seminal papers by Maskin (1977) and Moore and Repullo (1988). For a survey, see Moore (1992).
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buyer’s power to extract information rents. It is the lack of verifiability in combination with

asymmetric information that generates inefficiencies.

Reversely, the predominant focus of the literature on implementation under incomplete

information has been how to elicit private information when contracts are complete. The

standard Revelation Principle (see e.g. Myerson (1979)) states that the range of imple-

mentable outcomes coincides with the set of outcomes that can be achieved through direct

and truthful communication. Yet since our model displays contractual incompleteness, we

cannot rely on this principle because it requires the contracting parties to write a complete

contract in the sense that all message–dependent variables are specified as part of the mech-

anism.3 As Bester and Strausz (2001, 2007) show, if this requirement is not satisfied, the

optimal mechanism may use some form of noisy communication with only partial information

revelation. Indeed, for our analysis of optimal exit options we can apply the framework of

Bester and Strausz (2001), except for the technical problem that we do not consider a finite

type space. In our context, noisy communication actually simplifies the optimal contract

because it pools the continuum of buyer types into merely two groups: all types below a

critical type do not trade, and all other types purchase the same quality.

Finally, our work is related to the large literature on the hold–up problem. The key

difference is that in line with much of the literature on implementation, we assume that the

parties can commit not to renegotiate ex post inefficient outcomes.4 In contrast, the hold–up

literature has studied what contracts can achieve in the absence of this commitment. Our

setup can be seen as a hold–up problem where the seller’s quality choice corresponds to a

‘purely cooperative’ ex ante investment that enhances the buyer’s valuation, and the buyer

does not invest. In the context of an exit option contract, our commitment assumption means

that the parties can commit not to renegotiate the pre-specified terms of trade if the buyer

exerts the exit option while gains from trade would exist.

While some authors argue that contract renegotiation leads to inefficient investments by

substantially or even fully undermining the power of contracting (Hart and Moore (1988),

Che and Hausch (1999), Edlin and Hermalin (2007)), others have identified contractual de-

vices that induce first–best investments (Chung (1991), Aghion, Dewatripont and Rey (1994),

Nöldeke and Schmidt (1995), Edlin and Reichelstein (1996), Evans (2006, 2008)). Our paper

is complementary to this debate. It provides an inefficiency result which is not rooted in the

3In our model, this would require that the seller’s quality choice is contractually determined as a function

of the buyer’s report about his valuation.
4For implementation and renegotiation under complete information see Maskin and Moore (1999).
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parties’ lack of commitment to enforce ex post inefficient default outcomes. Since the inef-

ficiencies associated with unverifiable investments are important for providing explanations

for different economic institutions (e.g. Grossman and Hart (1986), Hart and Moore (1990)),

our analysis suggests that enriching the incomplete contracts paradigm by the consideration

of asymmetric information may be a fruitful direction for the analysis of organizations.

This paper is organized as follows. Section 2 describes the contracting environment. In

Section 3 we consider exit option contracts in the benchmark cases, where either quality is

verifiable or the buyer’s valuation is public information. Section 4 studies the optimal exit

option contract with private and unverifiable information. Section 5 extends the analysis by

considering messages games. Section 6 provides concluding remarks. The proofs of all formal

results are relegated to an appendix in Section 7.

2 The Model

We consider a buyer and a seller, who are both risk neutral. In the first stage t = 0 they can

write a contract about the terms of trade, which occurs in some future stage t = 3. After

a contract has been signed, the realization of a random variable θ determines the buyer’s

type in stage t = 1. In stage t = 2 the seller selects the quality q ≥ 0 of an indivisible good.

The buyer’s valuation of consuming quality q depends on his type θ and is given by v(q, θ).

The seller’s cost of producing quality q is c(q). In stage t = 3 the buyer observes the seller’s

quality choice. Figure 1 summarizes the sequence of events.

-

t = 0

Contract

is signed

t = 1

Buyer observes

realization of θ t = 2

Seller selects

quality q

t = 3

Buyer observes

quality q

Figure 1: The Sequence of Events

In the first step of the analysis we study what the parties can achieve by using exit option

contracts. In Section 5 we extend the analysis to more general contracts. An exit option

contract allows the buyer in stage t = 3 to decide whether to accept delivery or to reject and

exit. We assume that the buyer’s decision is publicly observable. Thus at t = 0 it is possible
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to write a contract that specifies the buyer’s payment p = (pT , pN) contingent on whether

trade takes place or not.5 Note that we do not rule out payments from the seller to the buyer

because pT and pN are not restricted to be non–negative. Also note that the buyer’s exit

option in stage t = 3 is endogenously determined by the contract. A contract can eliminate

this option simply by specifying a sufficiently large payment pN .6

The buyer’s (gross) outside option value is zero, independently of his type θ. Therefore,

type θ accepts trade as long as v(q, θ)− pT ≥ −pN . We denote the buyer’s decision behavior

in the final stage by

h(q, p | θ) =

{

1 if v(q, θ) − pT ≥ −pN ,

0 if v(q, θ) − pT < −pN .
(1)

Thus, the buyer type θ’s payoff depends on q and p according to

U(q, p | θ) = h(q, p | θ)[v(q, θ) − pT ] − (1 − h(q, p | θ))pN (2)

= max[v(q, θ) − pT ,−pN ],

The seller’s profit is

Π(q, p | θ) = h(q, p | θ)pT + (1 − h(q, p | θ))pN − c(q) (3)

when he faces a buyer of type θ.

The buyer’s type θ is drawn from the interval Θ = [θ, θ̄] ⊂ R according to the continuously

differentiable cumulative distribution function F (·) with F ′(θ) > 0 for all θ ∈ Θ. Let T denote

the Borel σ–algebra on Θ. We make the following assumptions about v(·) and c(·):7

v(0, θ) = 0, vq(q, θ) > 0, vθ(q, θ) > 0, vqq(q, θ) ≤ 0, vqθ(q, θ) > 0, (4)

c(0) = 0, c′(q) > 0, c′′(q) > 0. (5)

Finally, to avoid corner solutions, we assume that vq(0, θ) > c′(0) and vq(q̄, θ) < c′(q̄) for q̄

sufficiently large.

5In principle, a contract could also require the buyer to make some down–payment p0 in stage t = 0. But,

it is easy to see that this would be equivalent to setting p′
T

= pT + p0 and p′
N

= pN + p0.
6In contrast, Compte and Jehiel (2007) define quitting rights by requiring that transfers are zero in the

disagreement case.
7Subscripts are used to denote partial derivatives.
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Our assumptions ensure that for any realization of θ ∈ Θ the first–best quality, which

maximizes the joint surplus,

q̃(θ) ≡ argmaxq≥0 v(q, θ) − c(q) (6)

is positive and unique. Also, by the last condition in (4), q̃(·) is strictly increasing in θ. If,

in addition to the transfers p, the buyer and the seller were able to contractually specify the

quality-level q̃(θ) contingent upon the realization of θ, this would maximize their ex ante

expected total surplus in stage t = 0.

In what follows, however, we consider two limitations on the parties’ contracting possi-

bilities that prevent them from making q̃(θ) part of the contract. First, we assume that,

although quality q is perfectly observable by both parties, it is not verifiable to outsiders.

Thus a contract that explicitly specifies some q cannot be enforced by the courts. The buyer

and the seller can only write an incomplete contract that leaves the selection of q at the

seller’s discretion.

Second, we assume that the buyer is privately informed about his type θ. This problem

of asymmetric information makes it impossible to condition the variables of the contract

directly upon the buyer’s observation of θ. But, a contract may specify a set M of verifiable

messages and require the buyer to select a message m ∈M after observing his type. An exit

option contract (M, p) thus consists of a message set M and message contingent transfers

p:M → R
2 such that, when in stage t = 1 the buyer reports m ∈M, he has to pay pT (m) in

stage t = 3 if accepting trade and pN(m) otherwise. Upon receiving the message m, the seller

updates his beliefs about the buyer’s type and chooses some quality q(m) in stage t = 2.

The objective of our analysis is to characterize the contract that maximizes the seller’s

expected profit in t = 0 subject to the buyer’s participation constraint and the restrictions

imposed by contractual incompleteness and asymmetric information. But we relegate the

derivation of the optimal exit option contract to Section 4. In the following section, we first

consider two benchmark environments where either the quality q is contractible or the buyer’s

type θ is publicly observable.

3 Two Benchmarks

To disentangle the implications of contractual incompleteness and asymmetric information,

we consider two reference points in this section. We first derive the seller’s optimal con-

tract when quality is verifiable and contractible, but the buyer’s type is private information.
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We then analyse the case where the buyer’s type is publicly observable, but quality is not

verifiable. It will turn out that in either situation the seller can appropriate the first–best

surplus

S̃ ≡

∫ θ̄

θ

[v(q̃(θ), θ) − c(q̃(θ))] dF (7)

under a contract that induces the buyer of type θ to accept quality q̃(θ). This means that

there is no efficiency loss as long as at least one of the variables q and θ is publicly observable.

Contractible q, asymmetric information about θ

Suppose quality q is verifiable so that the seller can contractually commit to q(m) after

receiving the buyer’s message m ∈ M. In this situation, the Revelation Principle (see e.g.

Myerson (1979)) allows restricting the analysis to direct and truthful communication. There-

fore, without loss of generality, the seller can use a contract with M = Θ, q: Θ → R+ and

p: Θ → R
2. Further, the contract has to be incentive–compatible so that reporting truthfully

is optimal for each type θ of the buyer.

The seller’s problem is thus to maximize his expected profit subject to the incentive–

compatibility conditions and the buyer’s participation constraint:

max{q(·), p(·)}

∫ θ̄

θ

Π(q(θ), p(θ) | θ)dF (8)

subject to

U(q(θ), p(θ) | θ) ≥ U(q(θ′), p(θ′) | θ) for all (θ, θ′), (9)

∫ θ̄

θ

U(q(θ), p(θ) | θ)dF ≥ 0. (10)

The incentive compatibility constraints (9) ensure that no buyer has an incentive to

misrepresent his type. Note that our incentive compatibility constraints are somewhat non–

standard, compared e.g. to a standard price discrimination problem, because they also

comprise that no buyer has an incentive to misreport his type and subsequently refuse to

trade. The participation constraint (10) guarantees that the buyer’s expected utility at the

contracting stage, before he learns his type, is at least zero. The next proposition states that

the first–best can be implemented.
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Proposition 1 (a) There exists a p∗(·) such that {q̃(·), p∗(·)} solves problem (8) – (10).

Moreover, h(q̃(θ), p∗(θ) | θ) = 1 for all θ ∈ Θ and

∫ θ̄

θ

Π(q̃(θ), p∗(θ) | θ)dF = S̃.

(b) For any solution {q∗(·), p∗(·)} of problem (8) – (10) it holds for almost all θ ∈ Θ that

v(q∗(θ), θ) − p∗T (θ) > −p∗N(θ).

The idea behind part (a) is to specify a large exit payment so that no buyer type wants

to submit a report that leads to exit. This effectively eliminates the exit option and we are

back in a standard price discrimination framework for which it is well known that the seller

can fully extract the first–best surplus if the buyer learns his private information only ex

post.

Part (b) is an implication of incentive compatibility for the buyer’s trade incentives that

any optimal contract has to satisfy. In light of (a), any optimal contract must extract all gains

from trade and thus induce almost all buyer types to trade. Now if two buyer types trade, a

straightforward implication of incentive compatibility is that the high valuation buyer must

obtain a larger ex post utility v−pT than the low valuation buyer. It follows that almost any

buyer type (except possibly the lowest) must strictly prefer trade over exit after reporting

his type truthfully. Otherwise, if one buyer type θ was exactly indifferent, all smaller types

θ′ < θ would be better off by pretending to be type θ in t = 1 and exiting in t = 3.

Non–contractible q, public information about θ

Suppose now that the buyer’s type θ is public information and that quality q, though observ-

able by both parties, is not contractible. In this situation, messages from the buyer about his

type are redundant, and the seller can simply offer a contract p : Θ → R
2 where the trade

and exit transfers are p(θ), when the buyer’s type is θ. Since q is not contractible, the seller

will select q ex post so as to maximize his profits given the transfers p(θ). In other words,

the choice of q is constrained by imperfect commitment on part of the seller.

The seller’s problem is thus to maximize his expected profit subject to his no–commitment

constraint and the buyer’s participation constraint:

max{q(·), p(·)}

∫ θ̄

θ

Π(q(θ), p(θ) | θ)dF (11)
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subject to

Π(q(θ), p(θ) | θ) ≥ Π(q′, p(θ) | θ) for all q′, θ, (12)

∫ θ̄

θ

U(q(θ), p(θ) | θ)dF ≥ 0. (13)

The no–commitment constraint (12) describes the seller’s choice of quality in t = 2. He

selects q to maximize his profit ex post, given the transfers p and the buyer’s type θ. Thus,

when designing the contract, the seller has to take into account his ex post incentives for

selecting q. Even though quality cannot be contractually determined, the next proposition

demonstrates that by the appropriate choice of exit options the seller can commit himself to

choose the first–best quality q̃ ex post.

Proposition 2 (a) There exists a p∗(·) such that {q̃(·), p∗(·)} solves problem (11) – (13).

Moreover, h(q̃(θ), p∗(θ) | θ) = 1 for all θ ∈ Θ and

∫ θ̄

θ

Π(q̃(θ), p∗(θ) | θ)dF = S̃.

(b) For any solution {q∗(·), p∗(·)} of problem (8) – (10) it holds for almost all θ ∈ Θ that

v(q∗(θ), θ) − p∗T (θ) = −p∗N(θ).

The basic idea behind part (a) is to contract an exit payment of zero and to specify the

trade transfer in such a way that each buyer type is exactly indifferent between trade and

exit when the seller offers the first–best quality. This contract commits the seller not to shirk

ex post because otherwise the buyer would exit and leave the seller with a zero payment.

Part (b) illuminates the implications of the no–commitment constraint for the buyer’s trade

incentives. Under any optimal contract the buyer needs to be indifferent between exit and

trade when offered the first–best quality. Otherwise, incentives would arise for the seller to

shade quality below the first–best.

Proposition 2 (a) is closely related to an observation by Che and Hausch (1999) who

show that the first–best can be implemented when the parties can commit themselves not to
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renegotiate the contract. They continue their analysis by establishing an inefficiency result

if committing not to renegotiate the contract is impossible. In contrast, we maintain the

assumption that contracts are not renegotiated. In the next section, we provide a different

inefficiency result for the case where the buyer’s type is private information. In this sense,

our analysis is complementary to Che and Hausch (1999).

Our inefficiency result is inspired by the observation that part (b) of Propositions 1 and 2

are clearly incompatible: when the buyer’s type is private information, each buyer type must

strictly prefer trade over exit in order to prevent lower types from untruthfully reporting a

high valuation and exiting subsequently. In contrast, when quality is non–contractible, each

buyer type needs to be indifferent between trade and exit in order to prevent the seller from

abusing his ex post discretion. Thus, there is a tension in providing appropriate incentives

jointly for the buyer (incentive compatibility) and the seller (no–commitment). This indicates

that the first–best cannot be implemented when quality is non–contractible and the buyer’s

type is private information.

4 Exit Options

We now turn to characterizing the optimal exit option contract when the seller cannot con-

tractually commit to some quality q and, at the same time, the buyer is privately informed

about his type θ. For this type of problem, it is well–known that it may not be optimal to

use a direct communication mechanism that induces truthful revelation. Indeed, as shown

in Bester and Strausz (2001), an indirect mechanism may support outcomes that cannot be

replicated by a direct mechanism. Bester and Strausz (2001) also show, however, that when

the set of types Θ is finite, any incentive efficient outcome can be replicated by an equilibrium

of a direct mechanism. Unfortunately, their result does not apply to our environment since

the set Θ represents a continuum of types. To overcome this problem, we first characterize

the outcomes that can be supported as a Perfect Bayesian Equilibrium under some arbitrary

message set M.8 This allows us in a second step to derive the seller’s optimal exit option

contract.

8In a different context also Krishna and Morgan (2004) consider a contracting problem with imperfect

commitment and a continuum of types.
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Perfect Bayesian Equilibrium

Let the message set M be an arbitrary metric space and let M denote the Borel σ−algebra

on M. The contract between the seller and the buyer specifies the transfers p:M → R
2. Thus,

when the buyer reports m ∈ M, he has to pay pT (m) if accepting trade, and pN(m) if he

exits in the final stage. The functions pN(·) and pT (·) are taken to be measurable.

We denote the θ–type buyer’s reporting strategy by r(·|θ) ∈ Q, where Q is the set of

probability measures on M. Thus, if r(H | θ) > 0 for some H ∈ M, this means the message

chosen by the θ–type buyer lies in H with probability r(H | θ).

After receiving message m, the seller updates his beliefs about the buyer’s type. We

denote these beliefs as µ(T,m). Thus, upon observing message m, the seller believes that the

buyer’s true type is in the set T ∈ T with probability µ(T,m). Given his beliefs, the seller

chooses q(m) to maximize his expected payoff.

To constitute a Perfect Bayesian Equilibrium, the functions (r, µ, q) have to satisfy three

conditions: First, the seller’s choice of q has to be optimal given his beliefs. This means that

q(·) has to satisfy the no–commitment constraint

q(m) = argmax
q

∫ θ̄

θ

Π(q, p | θ)µ(θ,m)dθ (14)

for all m ∈M.

Second, as the buyer anticipates that message m will induce the seller to select q(m), he

will select an optimal reporting strategy. The set of optimal messages for type θ is

M(θ) ≡ {m ∈M |U(q(m), p(m) | θ) ≥ U(q(m′), p(m′) | θ) for all m′ ∈M}. (15)

Let R(θ) denote the support of the θ-type buyer’s reporting strategy r(·|θ). Then optimality

of the buyer’s reporting strategy requires that

R(θ) ⊆M(θ) for all θ ∈ Θ. (16)

We refer to the constraint (16) as the buyer’s communication incentive constraint.

Third, the seller’s belief µ has to be consistent with Bayesian updating on the support of

the buyer’s reporting strategy. This means that µ(·,m) is derived from Bayes’ rule whenever

m ∈ R(θ) for some θ ∈ Θ. Of course, the belief µ determines the seller’s choice of q also

for messages that lie outside the support of the buyer’s reporting strategy. Yet, there are no

consistency restrictions on beliefs for such messages.
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Feasible contracts

Our next aim is to characterize the equilibrium outcomes that can arise under an arbitrary

contract (M, p). We demonstrate that at most a single positive quality level can be imple-

mented in equilibrium. Let us begin by introducing further notation. Consider a Perfect

Bayesian Equilibrium under some arbitrary message set M . In equilibrium, each buyer type

submits a messagem and will then be offered the quality q(m). We say that trade at a positive

quality takes place if q(m) > 0 and the buyer accepts to trade. We denote by M+(θ) ⊆M(θ)

the set of all messages that are optimal for the θ–type buyer and lead to trade at a positive

quality:

M+(θ) ≡ {m ∈M(θ) | q(m) > 0 and h(q(m), p(m) | θ) = 1}. (17)

We denote by R+(θ) ⊆ R(θ) the set of all messages that are in the support of the θ–type

buyer and lead to trade at a positive quality:

R+(θ) ≡ R(θ) ∩M+(θ). (18)

If m ∈ R+(θ), we refer to m as a positive trade message for buyer type θ. For a given message

m, we collect all types for whom m is a positive trade message in the set T+(m):

T+(m) ≡ {θ ∈ Θ |m ∈ R+(θ)}. (19)

Notice that T+(m) = ∅ if and only if there is no buyer type for whom m is a positive trade

message, that is, m is in no buyer type’s support, or q(m) = 0, or each buyer who submits

m exits. Therefore, we refer to m as a positive trade message if T+(m) 6= ∅. For any positive

trade message, we define

θℓ(m) ≡ inf T+(m). (20)

The next two lemmas state basic consequences of the no–commitment (14) and the com-

munication incentive (16) constraints. Lemma 1 follows from (14).

Lemma 1 Let m be a positive trade message, then the buyer type θℓ(m) is indifferent between

trade and exit, i.e. v(q(m), θℓ(m)) − pT (m) = −pN(m) if T+(m) 6= ∅.

To see the intuition for Lemma 1, note that each type for whom m is a positive trade

message, weakly prefers trade over exit conditional on reporting m. Thus, by continuity, also

the type θℓ(m) weakly prefers trade over exit when offered q(m). The fact that he cannot
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strictly prefer trade over exit is a consequence of the seller’s no–commitment constraint:

when receiving message m, the seller infers that the buyer’s type cannot be smaller than

θℓ(m) because no type smaller than θℓ(m) sends message m in equilibrium. Thus, if the

θℓ(m)–type strictly preferred trade over exit, the seller could slightly reduce the quality and

the buyer would still accept to trade with probability 1.

The next lemma follows from Lemma 1 and the communication incentive constraint.

Lemma 2 The exit payments pN(m) and the types θℓ(m) are the same for all positive trade

messages m, i.e. pN(m) = pN(m′) and θℓ(m) = θℓ(m
′) if T+(m) 6= ∅ and T+(m′) 6= ∅.

To understand Lemma 2, observe first that continuity of U in θ and the definition of

the infimum imply that any positive trade message m is an optimal message for the buyer

type θℓ(m). Since θℓ(m) is indifferent between exit and trade when he sends message m, his

utility from sending m is simply −pN(m). Hence, if there was some other message m′ with

pN(m′) < pN(m), message m could not be optimal, as submitting m′ and exiting would yield

the buyer a larger utility.

Further, the intuition for why θℓ(m) = θℓ(m
′) is similar to the case in which q is con-

tractible. If two buyer types weakly prefer trade over exit upon sending some message, then

the higher type must obtain a strictly larger utility v − pT in order for him not to have

incentives to deviate to the message of the lower type. Hence, θℓ(m) must be the same as

θℓ(m
′) because by Lemma 1 both types weakly prefer to trade and their utility v − pT is the

same due to Lemma 1 and because pN(m′) = pN(m).

Lemma 2 allows us to define a critical type and constant exit payments for all positive

trade messages m:9

θ̂ ≡ θℓ(m) and p̂N ≡ pN(m) for all m with T+(m) 6= ∅. (21)

From Lemmas 1 and 2 we deduce:

v(q(m), θ̂) − pT (m) = −p̂N for all m with T+(m) 6= ∅. (22)

Condition (22) says that only such positive quality levels can be implemented as an equi-

librium for which the critical type is indifferent between trade and exit. In fact, the no–

commitment and communication incentive constraints together imply that only a single

positive quality level can be implemented in equilibrium. This is stated in the following

equilibrium characterization:

9If there is no positive trade message, i.e. if T+(m) = ∅ for all m ∈ M , we set θ̂ = θ̄.
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Proposition 3 In any Perfect Bayesian Equilibrium, there is a θ̂ and a q̂ > 0 such that:

(i) For all θ > θ̂ and m ∈ R(θ) it holds that q(m) = q̂ and h(q(m), p(m) | θ) = 1.

(ii) For all θ < θ̂ and m ∈ R(θ) it holds that q(m) = 0 or h(q(m), p(m) | θ) = 0.

The proposition says that in equilibrium only an imperfect sorting of types into two groups

can occur and that at most one group can trade at a positive quality level. A finer sorting of

types, say with two positive quality levels, is impossible because communication incentives

would imply that the high quality traders must get a higher utility from trade than the low

quality traders. At the same time, for high quality provision by the seller to be credible, the

lowest high quality trader must be indifferent between trade and exit. But then a low quality

trader can obtain the same utility as this high quality trader by asking for the high quality

and then exiting.

An immediate corollary of Proposition 3 is that the first–best cannot be implemented.

By Propositions 1 and 2, this inefficiency result is driven by the combined presence of private

information and contractual incompleteness.

Optimal Exit Options

We now derive the optimal exit option contract for the seller. Proposition 3 implies that

the optimal contract can be found in the class of contracts that have only two messages, say

ml,mh. Such a contract induces a Perfect Bayesian Equilibrium in which all ‘high’ types

above a critical θ̂ report the message mh and trade the positive quality q(mh) = q̂, and all

‘low’ types below θ̂ report message ml and trade a zero quality q(ml) = 0.

The seller’s problem is to choose transfers p = {pN(ml), pT (ml), pN(mh), pT (mh)}, a qual-

ity q̂, and a critical type θ̂ that maximize his ex ante profit subject to the participation

constraint and the constraint that (q̂, θ̂) can be supported as a Perfect Bayesian Equilibrium

given the transfers p. Without loss of generality, we set pN(ml) = pT (ml) = pN(mh) and

define pN = pN(mh), and pT = pT (mh) with pT > pN .10 Formally, the seller’s problem is:

max
pN ,pT ,q̂,θ̂

F (θ̂)pN + (1 − F (θ̂))(pT − c(q̂)) (23)

10By Proposition 3, all types who send message ml trade quality 0 and exit. Hence, we need that v(0, θ)−

pT (ml) ≤ −pN (ml), and that the seller optimally set q = 0 if he receives message ml. Any transfers with

pN (ml) = pT (ml) satisfy these two requirements. Further, equating pT (ml) and pN (mh) is a normalization.

Finally, pT > pN because by Proposition 3, we must have: v(q̂, θ̂)− pT = −pN . Since q̂ > 0, this implies that

pT > pN .
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subject to

q̂ ∈ argmax
q

∫ θ̄

θ̂

Π(q, p | θ)

1 − F (θ̂)
dF (θ), (24)

v(q̂, θ̂) = pT − pN , (25)

−F (θ̂)pN +

∫ θ̄

θ̂

[v(q̂, θ) − pT ] dF (θ) ≥ 0. (26)

The seller’s objective (23) consists of two parts. The first part is the expected profit that he

extracts from the types who announce message ml and pay the transfer pN . Since the quality

traded is zero, no production costs accrue to the seller in this case. The second part is the

expected profit that the seller extracts from the types who announce message mh and pay

the transfer pT . Since all these types trade quality q̂, the seller has costs c(q̂) in this case.

Constraints (24) and (25) require that (q̂, θ̂) constitutes an equilibrium. By the no–

commitment constraint (24), if the seller receives message mh, he infers that the buyer type

is larger than θ̂, and his belief that he faces a type θ is given by the conditional distribution

dF (θ)/(1 − F (θ̂)). Given these beliefs, q̂ has to be the optimal quality selection. Condition

(25) is the equilibrium requirement from Proposition 3 that the critical type θ̂ be indifferent

between exit and trade at transfers p and quality level q̂. Finally, (26) is the buyer’s ex ante

participation constraint.

We proceed by making the seller’s problem more tractable. Observe first that the par-

ticipation constraint must obviously be binding at the optimum. Combining this with the

seller’s objective, the seller’s problem becomes to maximize the total surplus

S(q̂, θ̂) =

∫ θ̄

θ̂

(v(q̂, θ) − c(q̂)) dF (θ) (27)

subject to (24) and (25).

Next, we reformulate the constraints (24) and (25). As explained above, these constraints

embody the two requirements that the seller’s choice be optimal given his beliefs, and that

the seller’s beliefs be consistent with the buyer’s reporting strategy. To describe equilibrium,

we first consider the seller’s optimal quality choice (his ‘best response’) against arbitrary

beliefs. Suppose the seller has received message mh and holds the belief that all types larger

than an arbitrary type θ̂ have submitted mh. Then choosing a relatively high quality q with

v(q, θ̂) − pT > −pN is clearly suboptimal for him, because all types θ ≥ θ̂ have a strict
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incentive to trade and so the seller could gain by slightly lowering quality. Therefore, the

seller must optimally choose a quality level q′ such that v(q′, θ̂)− pT ≤ −pN . By setting such

a quality q′, the seller effectively chooses a type θ′ ∈ [θ̂, θ̄] who is indifferent between trade

and exit because v(q′, θ′) = pT − pN . All types θ ≥ θ′ accept quality q′, whereas all types

θ ∈ [θ̂, θ′] exit. Thus, the seller anticipates that quality q′ will be rejected with probability

(F (θ′) − F (θ̂))/(1 − F (θ̂)) and accepted with probability (1 − F (θ′))/(1 − F (θ̂)).

Thus, given transfers p and given the belief that all types larger than type θ̂ have sub-

mitted mh, the seller’s optimal behavior is defined by the pair

(q∗(θ̂, p), θ∗(θ̂, p)) ≡ argmax
q′,θ′

F (θ′) − F (θ̂)

1 − F (θ̂)
pN +

1 − F (θ′)

1 − F (θ̂)
pT − c(q′) (28)

subject to v(q′, θ′) = pT − pN and θ′ ≥ θ̂. (29)

While (28) describes the seller’s best response against arbitrary beliefs, in equilibrium the

seller’s beliefs are consistent with the buyer’s actual behavior. This is made explicit in the

next lemma which provides an alternative characterization of the equilibrium conditions (24)

and (25).

Lemma 3 Let p be given. Then (q̂, θ̂) satisfies (24) and (25) if and only if (q̂, θ̂) solves the

following fixed–point problem:

q̂ = q∗(θ̂, p) and θ̂ = θ∗(θ̂, p). (30)

Since the conditions (30) include the optimality conditions for the seller, (q̂, θ̂) has to satisfy

the necessary first–order conditions for optimality of problem (28). We now impose conditions

on F and v such that the first–order conditions are actually sufficient for optimality. This

allows us to state Lemma 3 in terms of first–order conditions.

Lemma 4 Let F (·) be convex and v(·) be quasi–concave.11 For given p, (q̂, θ̂) then solves the

fixed–point problem (30) if and only if

−
F ′(θ̂)

1 − F (θ̂)
(pT − pN) + c′(q̂)

vθ(q̂, θ̂)

vq(q̂, θ̂)
≤ 0, (31)

v(q̂, θ̂) = pT − pN . (32)

11A sufficient condition for v(·) to be quasi–concave is that vθθ ≤ 0 in addition to the assumptions in (4).
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Finally, we can eliminate transfers from the seller’s problem. To see this, note that for

any (q̂, θ̂), transfers can be found such that (32) holds. Hence, we can insert (32) in (31) and

obtain a single constraint that is independent of transfers. Since the objective S(q̂, θ̂) is also

independent of transfers, the seller’s problem reduces to a maximization problem just over

(q̂, θ̂). The next proposition summarizes our findings.

Proposition 4 Let F (·) be convex and v(·) be quasi–concave. Then the seller’s problem is

max
q̂,θ̂

∫ θ̄

θ̂

[v(q̂, θ) − c(q̂)] dF (θ) (33)

subject to

−
F ′(θ̂)

1 − F (θ̂)
v(q̂, θ̂) + c′(q̂)

vθ(q̂, θ̂)

vq(q̂, θ̂)
≤ 0. (34)

In other words, the feasible set of (q̂, θ̂)–combinations which jointly satisfy the seller’s no–

commitment and the buyer’s incentive communication incentive constraints reduces to the

simple inequality constraint (34).12 This is a rather remarkable simplification of the problem

that we started out with.

Using Proposition 4, it is straightforward to compute the optimal contract. Let, for

example, θ be uniformly distributed on [0, 1], v(q, θ) = qθ, and c(q) = cq2. Then it is easily

verified that q̂ = 0.3492/c and θ̂ = 0.5565 solve problem (33)–(34). By (25) and (26) the

optimal contract specifies the trade payment pT = 0.2286/c and the exit payment pN =

0.0343/c.

5 Message Games

In the two benchmark situations considered in Section 3, a simple exit option contract imple-

ments the first–best already. Therefore the seller cannot increase his profit by using a more

complicated mechanism. Yet, as our analysis in the previous section has shown, the first–best

cannot be achieved by such simple contracts when the buyers’ type is private information

and quality is not verifiable. In this section we extend this observation by showing that the

first–best cannot be implemented even under the most general form of contracting.

12The corresponding transfers pN and pT are determined by (25) and (26).
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From a general contracting perspective, exit option contracts are restrictive in two ways.

First, the trade outcome described by (1) is deterministic. If a publicly verifiable randomisa-

tion device is available, a contract can more generally specify a probability of trade. Second,

an exit option contract limits communication to a simple message of the buyer whether he

accepts or refuses trade. Given that both parties are informed about the seller’s quality

choice, trade can more generally be made contingent on the outcome of a message game in

which the parties use their information to exchange verifiable messages.

To remove these restrictions of the exit option contract, we modify stage t = 3 of the

environment described in Section 2. In t = 3, the seller and the buyer now become engaged

in a message game, where they simultaneously select messages zS ∈ ZS and zB ∈ ZB,

respectively. Even though we describe the exchange of messages as a static game, this

description may be thought of as the normal form representation of a dynamic game involving

many stages of communication. The messages selected in t = 3 are verifiable so that the terms

of trade can be contractually specified as a function of the buyer’s message m ∈ M in stage

t = 1 and the outcome z = (zS, zB) ∈ Z ≡ ZS × ZB of the message game in stage t = 3.

Thus, in addition to the message sets (M,Z), a contract in most general form determines a

probability of trade x(m, z) and an expected payment p(m, z) from the buyer to the seller.

More formally, a contract is now a combination (M,Z, x, p), where x:M × Z → [0, 1] and

p:M × Z → R.13 The buyer’s and the seller’s expected payoffs are defined as

U(q,m, z|θ) ≡ x(m, z)v(q, θ) − p(m, z), Π(q,m, z) ≡ p(m, z) − c(q). (35)

It is easy to see that this environment entails the exit option contract as a special case, where

x and p do not depend on the seller’s message and the buyer has only two messages, with

x = 1 for one message and x = 0 for the other.

Our description of Perfect Bayesian Equilibrium readily extends to the present context.

The only novelty is that, after m and q have been selected in the previous stages, in t = 3

now a continuation game Γ(m, q) starts in which the seller has imperfect information about

the buyer’s type. After having observed the buyer’s message m, the seller enters Γ(m, q) with

the belief that the buyer’s true type is in the set T ∈ T with probability µ(T,m). The game

Γ(m, q) is thus a (static) Bayesian game, and as part of the Perfect Bayesian Equilibrium

of the overall game, the players’ message strategies have to constitute a Bayesian Nash

13In principle, Z may depend on m ∈ M . In what follows, we ignore this possibility because it does not

affect our results.
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Equilibrium. This means that (ẑS, ẑB(·)), with ẑS ∈ ZS and ẑB: Θ → ZB, is an equilibrium

of Γ(m, q) if the seller’s message ẑS satisfies

∫ θ̄

θ

p(m, ẑS, ẑB(θ))µ(θ,m)dθ ≥

∫ θ̄

θ

p(m, zS, ẑB(θ))µ(θ,m)dθ for all zS ∈ ZS, (36)

and each buyer type θ with m ∈ R(θ) selects a message ẑB(θ) such that

U(q,m, ẑS, ẑB(θ)|θ) ≥ U(q,m, ẑS, zB|θ) for all zB ∈ ZB. (37)

Notice that in t = 3 the seller’s production costs are already sunk so that in (36) he only

cares about expected payments when choosing his message ẑS. In what follows we denote by

E(m, q) the set of Bayesian Nash Equilibria of the game Γ(m, q).

As is well–known, message games typically admit a multiplicity of equilibria. While

some of these equilibria may implement the desired outcome, others may induce unintended

outcomes. To resolve this problem, we will apply the usual concept of strong implementation,

which requires that all equilibria in E(m, q) have identical outcomes. More specifically, we

restrict the set of admissible contracts by imposing the following condition on all continuation

games Γ(m, q):

Condition 1 If (ẑS, ẑB(·)) ∈ E(m, q) and (z̃S, z̃B(·)) ∈ E(m, q), then

x(m, ẑS, ẑB(θ)) = x(m, z̃S, z̃B(θ)) and p(m, ẑS, ẑB(θ)) = p(m, z̃S, z̃B(θ)) (38)

for almost all θ such that m ∈ R(θ).

Thus, if the buyer type θ has reported m ∈M in stage t = 1 and the seller has produced

quality q in stage t = 2, Condition 1 implies that the probability of trade x and the payment

p are uniquely determined by the outcome of the subsequent message game in t = 3, even

when this game has multiple equilibria.

After a contract has been signed, the path of a Perfect Bayesian Equilibrium induces

for each buyer type θ some message m∗(θ) in stage t = 1. Given his equilibrium beliefs

µ∗(·,m∗(θ)), the seller then chooses some quality q∗(θ) in t = 2. Finally, in t = 3 the

equilibrium outcome (z∗S(θ), z∗B(θ)) of the message game Γ(m∗(θ), q∗(θ)) determines a prob-

ability of trade x∗(θ) and a payment p∗(θ). We say that a contract implements (q∗, x∗), with
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q∗ : Θ → R+ and x∗ : Θ → [0, 1], if there is a Perfect Bayesian Equilibrium such that, for

each type θ, equilibrium play results in trade of quality q∗(θ) with probability x∗(θ).14

In the remainder of this section, we show that even in the most general contracting envi-

ronment the first–best outcome cannot be implemented as a Perfect Bayesian Equilibrium.

Indeed, similarly to the exit option contract studied in the previous section, partial pooling of

different buyer types is unavoidable in any equilibrium outcome. We begin with the following

lemma.

Lemma 5 Suppose that (q∗, x∗) can be implemented. If there is an interval I = [θ1, θ2] ⊆ Θ

such that q∗(·) is strictly increasing on I and x∗(·) = 1 on I, then for each θ ∈ (θ1, θ2) the

buyer’s message m∗(θ) reveals his type to the seller so that µ∗(θ,m∗(θ)) = 1.

To see the intuition behind Lemma 5, observe that since q∗(·) is strictly increasing on I,

the seller chooses distinct quality levels for each type in I. Therefore, each type in I has

to use a distinct message at stage 1. Moreover, the single–crossing property vqθ > 0 implies

that types outside of I have a stronger incentive to imitate a type at the boundary than in

the interior of I. Hence, each buyer type in (θ1, θ2) sends a message that is not used by any

other type and therefore reveals his type to the seller. The next lemma is key to our analysis.

Lemma 6 Suppose that Condition 1 holds and that (q∗, x∗) can be implemented. If there is

an interval I = [θ1, θ2] ⊆ Θ such that q∗(·) is strictly increasing on I and x∗(·) = 1 on I,

then for each θ ∈ (θ1, θ2) there exists a message z′B 6= z∗B(θ) such that x(m∗(θ), z∗S(θ), z′B) < 1

and

U(q∗(θ),m∗(θ), z∗S(θ), z∗B(θ)|θ) = U(q∗(θ),m∗(θ), z∗S(θ), z′B|θ). (39)

Recall from the analysis of exit options that to implement a positive quality level, by (22)

the smallest buyer type who trades this quality level has to be indifferent between trade and

exit. Lemma 6 extends this insight to the general contracting environment. Equation (39)

says that for any buyer type θ in the interior of I there has to be some message z′B such

14In principle, q and x could be lotteries since the buyer could use a mixed strategy in t = 1. Yet we

restrict ourselves to non–random outcomes of q and x as the first–best, for which we want to establish an

impossibility result, is non–random.
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that the buyer is indifferent between trading q∗(θ) with probability 1, and trading q∗(θ) with

probability x(m∗(θ), z∗S(θ), z′B) at a lower price. As in the case of exit options, the underlying

reason is the seller’s limited commitment which makes it necessary to deter the seller from

lowering the desired quality ex post.

To see this more clearly, observe that under the assumptions of Lemma 6, a buyer type

θ in the interior of I reveals himself by Lemma 5. Now suppose the seller deviated to a

quality q′ slightly below q∗(θ) in stage 2 and announced his original equilibrium message

z∗S(θ) in stage 3. If there was no message z′B that left the buyer indifferent as in (39),

then his best response would still be to announce z∗B(θ) and thus trade q′ with probability

1 at the same price. In other words, the messages (z∗B(θ), z∗S(θ)) would remain to be an

equilibrium of the continuation game that starts after a deviation of the seller to q′. Since q′

is less costly to produce than q∗(θ), the seller would benefit from such a deviation provided

(z∗B(θ), z∗S(θ)) would indeed be played in stage 3. Under Condition 1, however, it does not

matter which equilibrium is played since any equilibrium yields the same payment to the

seller. Consequently, the seller could indeed gain from deviating to a lower quality.

In other words, the message z′B serves a similar function as an exit option in restraining the

seller’s limited commitment: it creates a credible threat for the buyer that deters the seller to

lower quality ex post. In the previous sections, we have seen that designing exit options in a

way that would give the seller incentives to choose first–best quality is incompatible with the

buyer possessing private information, because incentives would arise for low valuation buyers

to pretend a high valuation and then exit. The same force undermines efficient contracting

in the general environment. In fact, pooling of different buyer types is unavoidable because

no strictly increasing quality schedule can be implemented:

Proposition 5 Suppose that Condition 1 holds and that (q∗, x∗) can be implemented. Then

there is no interval I ⊆ Θ such that q∗(·) is strictly increasing and x∗(·) = 1 on I. Thus, if

q∗(·) is positive and continuous and x∗(·) = 1 on some interval I, then q∗(·) is constant on

I.

The intuition for Proposition 5 is the same as for the simple exit option contract studied

in the previous sections. To implement a strictly increasing quality schedule and to prevent

high valuation buyers from mimicking low valuation buyers, high valuation buyers have to

get a higher (ex post) utility than low valuation buyers. But Lemma 6 then implies that it
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becomes profitable for a type θ′ < θ, who is sufficiently close to type θ, to mimic type θ in

stage 1 and then announce message z′B in stage 3.

The second part of Proposition 5 says that if for positive equilibrium qualities trade takes

place with probability one, then only quality schedules can be implemented that have the

shape of a step function. An exit option contract is a special case with only a single step. In

the exit option case, the lowest buyer type who just trades a positive quality is indifferent

between trading this quality and refusing to trade. In the general case, more than one positive

quality levels can be potentially implemented. The basic difference between a simple exit

option and a general mechanism is that in the general mechanism the buyer’s off–equilibrium

threat, which deters the seller from deviating to a lower quality, can involve random trade.

In other words, the general mechanism allows for stochastic exit options. In this way, the

buyer’s expected value from ‘exiting’ can to some degree be made responsive to his type,

whereas by (22) the value of a deterministic exit option must be the same for any buyer

type. This mitigates the incentive constraint that low types must not announce a high type

and then simply exit, and so permits a finer sorting of types than when the exit option is

deterministic.

This reasoning also implies that once we rule out random trade the general mechanism

essentially collapses to a simple exit option contract. This is the object of the next proposi-

tion.

Proposition 6 Suppose that Condition 1 holds and that (q∗, x∗) can be implemented. If

trade is deterministic so that x : M × Z → {0, 1}, then the following holds:

(i) At most a single positive quality level can be implemented. That is, there is θ̂ and a

q̂ > 0 such that q∗(θ) = q̂ and x∗(θ) = 1 for all θ > θ̂ and q∗(θ) = 0 or x∗(θ) = 0 for

all θ < θ̂.

(ii) (q∗, x∗) can be implemented by an exit option contract.

Random mechanisms are perhaps questionable to implement because of legal enforcement

problems.15 Proposition 6 says that in such circumstances no efficiency gains are possible by

using a more complex mechanism than a simple exit option contract. Even though we have

15For this reason, Che and Hausch (1999) rule out such mechanisms in their analysis.
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shown in Section 2 that exit option contracts fail to achieve full efficiency, they are second–

best efficient. Proposition 6 establishes a central role for exit option contracts in overcoming

problems caused by contractual incompleteness and asymmetric information.

Note that the exit option contract described in Propositions 3 and 6 is simpler than

the efficient contracts of the benchmark cases in the sense that the former supports only a

single quality q̂ rather than a schedule of type dependent qualities. Thus, as the contracting

environment becomes more complex, the resulting contractual arrangement actually becomes

simpler. Complex environments may therefore be consistent with the widespread use of

relatively simple contracts in reality.

6 Conclusion

We have studied bilateral contracting in an environment which is characterized by both con-

tractual incompleteness and asymmetric information. We demonstrate that even under the

most general form of contracts, the joint occurrence of these imperfections necessarily up-

sets first–best efficient contracting. Moreover, when random contracts are precluded, general

contracts cannot improve upon simple exit option contracts.

Our inefficiency result suggests that incomplete contracts with asymmetric information

may be useful for studying institutional design, even in the absence of contract renegotiation.

This is so because the allocation of property rights or decision rights may matter for the extent

to which efficiency can be achieved. Imagine, for example, that the non–verifiable action is

more broadly interpreted as some decision that an organization has to take. Suppose further

that the right to take this decision can be conferred to one of its members. This assignment

of authority may be enforced by the ownership of assets and resources that are necessary to

implement a decision. In such an environment, the optimal institutional arrangement can be

determined by comparing the efficiency implications of different allocations of property and

decision rights.
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7 Appendix

Proof of Proposition 1: (a) Let

k ≡

∫ θ̄

θ

∫ θ

θ

vθ(q̃(x), x) dx dF (θ) > 0, (40)

and define

p∗T (θ) ≡ v(q̃(θ), θ) −

∫ θ

θ

vθ(q̃(x), x) dx+ k, p∗N(θ) ≡ k. (41)

We first show that the mechanism (q̃, p∗) satisfies incentive compatibility (9), that is, for all

θ, θ′:

v(q̃(θ), θ) − p∗T (θ) ≥ −p∗N(θ′), (42)

v(q̃(θ), θ) − p∗T (θ) ≥ v(q̃(θ′), θ) − p∗T (θ′). (43)

Inequality (42) is immediate by the definition of p∗. To see (43), let θ′ > θ. By definition of

p∗T , the difference between the left and the right hand side of (43) is

−

∫ θ′

θ

vθ(q̃(x), x) dx− v(q̃(θ′), θ) + v(q̃(θ′), θ′). (44)

Since q̃(·) is increasing and vqθ > 0, and since θ′ > θ, we have

−

∫ θ′

θ

vθ(q̃(x), x) dx ≥ −

∫ θ′

θ

vθ(q̃(θ
′), x) dx = −v(q̃(θ′), θ′) + v(q̃(θ′), θ). (45)

Thus, expression (44) is larger than 0, and this proves (43) for θ′ > θ. The argument for

θ′ < θ is analogous.

Next, we verify the participation constraint (10). We note in passing that (41) implies

that h(q̃(θ), p∗(θ) | θ) = 1 for all θ ∈ Θ. Hence, U(q̃(θ), p∗(θ) | θ) = v(q̃(θ), θ) − p∗T (θ). Thus,

∫ θ̄

θ

U(q(θ), p(θ) | θ) dF (θ) =

∫ θ̄

θ

[v(q̃(θ), θ) − p∗T (θ)] dF (θ) (46)

=

∫ θ̄

θ

∫ θ

θ

vθ(q̃(x), x)dx dF (θ) − k = 0, (47)

where the last equality follows from the definition of k.
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To complete the proof of (a), notice that (q̃, p∗) is optimal, because the seller fully extracts

the first–best surplus

∫ θ̄

θ

Π(q̃(θ), p∗(θ) | θ) dF =

∫ θ̄

θ

[p∗T (θ) − c(q̃(θ))] dF (48)

=

∫ θ̄

θ

[v(q̃(θ), θ) − c(q̃(θ))] dF −

∫ θ̄

θ

∫ θ

θ

vθ(q̃(x), x)dx dF + k (49)

= S̃ − 0. (50)

Thus, the seller can clearly not do better than this.

(b) It follows from (a) that under any optimal contract (q∗, p∗), the seller must fully extract

the first–best surplus S̃. This implies that q∗(θ) = q̃(θ) for almost all θ ∈ Θ. Since q∗ = q̃

is strictly increasing in θ almost everywhere, incentive compatibility implies by a standard

argument that U(q∗(θ), p∗(θ) | θ) is strictly increasing in θ almost everywhere. Moreover,

full surplus extraction also implies that h(q∗(θ), p∗(θ) | θ) = 1 almost everywhere. Therefore,

there is a Θ′ ∈ T with
∫

Θ′
dF = 1 such that U(q∗(θ), p∗(θ) | θ) is strictly increasing on Θ′ and

U(q∗(θ), p∗(θ) | θ) = v(q∗(θ), θ) − p∗T (θ) ≥ −p∗N(θ) for all θ ∈ Θ′. (51)

We now prove the claim by showing that v(q∗(θ), θ)−p∗T (θ) > −p∗N(θ) for all θ ∈ Θ′ \{θ}.

Indeed, suppose to the contrary that there is a θ ∈ Θ′\{θ} with v(q∗(θ), θ)−p∗T (θ) = −p∗N(θ).

Because Θ′ has mass 1 and θ > θ, we can find a θ′ ∈ Θ′ with θ > θ′. Thus, we have

U(q∗(θ′), p∗(θ′) | θ′) < U(q∗(θ), p∗(θ) | θ) = v(q∗(θ), θ) − p∗T (θ) = −pN(θ). (52)

But this is a contradiction because incentive compatibility requires that U(q∗(θ′), p∗(θ′) | θ′) ≥

−pN(θ) for type θ′. Q.E.D.

Proof of Proposition 2: (a) For given θ ∈ Θ, define

p∗T (θ) ≡ v(q̃(θ), θ), p∗N(θ) ≡ 0. (53)

We first verify that q̃(·) satisfies the seller’s no–commitment constraint (12). We show that

the seller optimally selects q̃(·) given p∗. It follows from the definition of transfers in (53)

that when the seller chooses q̃(θ), then the buyer is just willing to trade, and the seller’s

profit is Π(q̃(θ), p∗(θ) | θ) = p∗T (θ)−c(q̃(θ)). Now consider a quality q < q̃(θ). Then the buyer

exits and the seller’s profit is

Π(q, p∗(θ) | θ) = p∗N(θ) − c(q) ≤ 0 ≤ v(q̃(θ), θ) − c(q̃(θ)) = Π(q̃(θ), p∗(θ) | θ), (54)
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where the second inequality follows from the assumption that the surplus from the first–best

quality is positive. Consider next a quality q > q̃(θ). Then the buyer accepts to trade and

the seller’s profit is

Π(q, p∗(θ) | θ) = p∗T (θ) − c(q) < p∗T (θ) − c(q̃(θ)) = Π(q̃(θ), p∗(θ) | θ), (55)

where the inequality follows because costs are strictly monotone in q. Thus, (54) and (55)

establish that q̃(·) satisfies the no–commitment constraint (12).

Next, we verify the participation constraint (13). We note in passing that (53) implies

that h(q̃(θ), p∗(θ) | θ) = 1 for all θ ∈ Θ. Hence, U(q̃(θ), p∗(θ) | θ) = v(q̃(θ), θ) − p∗T (θ) = 0.

Thus, the participation constraint is, in fact, binding.

To complete the proof of (a), notice that (q̃, p∗) is optimal, because the participation

constraint is binding so that the seller fully extracts the first–best surplus S̃.

(b) It follows from (a) that under any optimal contract (q∗, p∗), the seller must fully extract

the first–best surplus S̃. Therefore, it must hold that h(q∗(θ), p∗(θ) | θ) = 1 for almost all

θ ∈ Θ. That is, there is Θ′ ∈ T with
∫

Θ′
dF = 1 and v(q∗(θ), θ) − p∗T (θ) ≥ −p∗N(θ) for

all θ ∈ Θ′. Now suppose that there is a θ′ ∈ Θ′ such that v(q∗(θ′), θ′) − p∗T (θ′) > −p∗N(θ′).

Then, when faced with buyer type θ′, the seller could increase his profit by slightly reducing

q∗(θ′), a contradiction to the no–commitment constraint (12). Thus, we must have that

v(q∗(θ), θ) − p∗T (θ) = −p∗N(θ) for all θ ∈ Θ′, and this completes the proof. Q.E.D.

Proof of Lemma 1: By definition of M+(θ) in (17) one has h(q(m), p(m) | θ) = 1 for all

θ ∈ T+(m). Therefore, by (1), v(q(m), θ)−pT (m) ≥ −pN(m) for all θ ∈ T+(m). By continuity

of v(q, ·) this implies

v(q(m), θℓ(m)) − pT (m) ≥ −pN(m). (56)

Now suppose that v(q(m), θℓ(m)) − pT (m) > −pN(m). Since vθ(q, θ) > 0, this implies

v(q(m), θ) − pT (m) > −pN(m) for all θ ∈ T+(m). (57)

But this means that all buyer types who buy quality q(m) after reporting m would also

purchase a quality slightly below q(m). Hence the seller could gain by reducing q(m), a

contradiction to (14). Q.E.D.

Proof of Lemma 2: We first prove that pN(m) = pN(m′) if T+(m) 6= ∅ and T+(m′) 6= ∅.

By Lemma 1 there is a θℓ(m) and a θℓ(m
′) such that

U(q(m), p(m) | θℓ(m)) = v(q(m), θℓ(m)) − pT (m) = −pN(m), (58)

U(q(m′), p(m′) | θℓ(m
′)) = v(q(m′), θℓ(m

′)) − pT (m′) = −pN(m′).
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Since m ∈ M+(θ) for all θ ∈ T+(m), one has U(q(m), p(m) | θ) ≥ U(q(m′), p(m′) | θ) for all

θ ∈ T+(m) and U(q(m′), p(m′) | θ) ≥ U(q(m), p(m) | θ) for all θ ∈ T+(m′). By continuity of

U(q, p | ·) this implies

U(q(m), p(m) | θℓ(m)) ≥ U(q(m′), p(m′) | θℓ(m)), (59)

U(q(m′), p(m′) | θℓ(m
′)) ≥ U(q(m), p(m) | θℓ(m

′)).

Further, by (2)

U(q(m′), p(m′) | θℓ(m)) ≥ −pN(m′), U(q(m), p(m) | θℓ(m
′)) ≥ −pN(m). (60)

By (58)–(60), we have −pN(m) ≥ −pN(m′) and −pN(m′) ≥ −pN(m). Therefore pN(m) =

pN(m′).

It remains to show that θℓ(m) = θℓ(m
′) if T+(m) 6= ∅ and T+(m′) 6= ∅. Suppose the

contrary, i.e. θℓ(m) 6= θℓ(m
′). Without loss of generality, let θℓ(m) < θℓ(m

′). Note that

q(m) > 0 and q(m′) > 0 because m ∈ M+(θ) for all θ ∈ T+(m) and m′ ∈ M+(θ) for all

θ ∈ T+(m′). Since each type reports optimally, it must be the case that

v(q(m′), θ) − pT (m′) ≥ v(q(m), θ) − pT (m) for all θ ∈ T+(m′), (61)

so that, by continuity of v(q, ·),

v(q(m′), θℓ(m
′)) − pT (m′) ≥ v(q(m), θℓ(m

′)) − pT (m). (62)

Since θℓ(m) < θℓ(m
′) and vθ(q, θ) > 0,

v(q(m), θℓ(m
′)) − pT (m) > v(q(m), θℓ(m)) − pT (m). (63)

By (62) and (63),

v(q(m′), θℓ(m
′)) − pT (m′) > v(q(m), θℓ(m)) − pT (m). (64)

Because pN(m) = pN(m′) this yields a contradiction to Lemma 1, which implies that

v(q(m′), θℓ(m
′)) − pT (m′) = −pN(m′) = −pN(m) = v(q(m), θℓ(m)) − pT (m). (65)

Q.E.D.

Proof of Proposition 3: (i) We first show that θ > θ̂ implies R(θ) ⊆M+(θ), i.e. all types

θ > θ̂ only select positive trade messages. If T+(m) = ∅ for all m ∈ M , then θ̂ = θ̄, and the
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claim trivially holds. So suppose there is an m ∈ M such that T+(m) 6= ∅. Contrary to the

claim, suppose there is a θ > θ̂ and an m′ ∈M(θ) \M+(θ). Since reporting m′ is optimal for

type θ, we have:

U(q(m′), p(m′) | θ) = max[−pT (m′),−pN(m′)] (66)

≥ v(q(m), θ) − pT (m)

> v(q(m), θ̂) − pT (m)

The first line follows since q(m′)h(q(m′), p(m′)|θ) = 0 and v(0, θ) = 0, the second line follows

since m′ is optimal for type θ, and the third line follows since θ > θ̂ and vθ(q, θ) > 0. By

definition of θ̂, we have m ∈M(θ̂), i.e. reporting m is optimal for type θ̂. By (22) this implies

U(q(m), p(m) | θ̂) = v(q(m), θ̂) − pT (m) ≥ U(q(m′), p(m′) | θ̂) (67)

= max[v(q(m′), θ̂) − pT (m′),−pN(m′)]

≥ max[−pT (m′),−pN(m′)]

Thus, v(q(m), θ̂) − pT (m) ≥ max[−pT (m′),−pN(m′)], which yields a contradiction to (66).

This proves that θ > θ̂ implies R(θ) ⊆M+(θ).

To complete the proof of (i), it remains to show that there is a q̂ such that q(m) = q̂

for all m ∈ R(θ) with θ > θ̂. Suppose the contrary. Then there is a θ > θ̂ and a θ′ > θ̂

such that m ∈ R(θ) and m′ ∈ R(θ′) with q(m) < q(m′). Since we have shown above that

R(θ) ⊆ M+(θ) and R(θ′) ⊆ M+(θ′), we know that T+(m) 6= ∅ and T+(m′) 6= ∅. Hence, by

(22)

v(q(m), θ̂) − pT (m) = v(q(m′), θ̂) − pT (m′). (68)

Therefore, q(m′) > q(m), θ > θ̂, and vqθ(q, θ) > 0 implies

v(q(m′), θ) − v(q(m), θ) > v(q(m′), θ̂) − v(q(m), θ̂) = pT (m′) − pT (m). (69)

But this is a contradiction because v(q(m), θ) − pT (m) ≥ v(q(m′), θ) − pT (m′) as m ∈ R(θ).

(ii) Let θ < θ̂ and suppose to the contrary that there is an m ∈ R(θ) such that q(m) > 0

and h(q(m), p(m)|θ) = 1. This implies

v(q(m), θ) − pT (m) ≥ −pN(m). (70)
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Since m ∈ R+(θ), it follows by definition that T+(m) 6= ∅. Hence (22) holds for m and

pN(m) = p̂N . However, since θ < θ̂ and vθ(q, θ) > 0, (70) and (22) contradict each other.

Q.E.D.

Proof of Lemma 3: For arbitrary (q′, θ′) with v(q′, θ′) − pT = −pN , define

φ(q′, θ′; θ̂) =

∫ θ̄

θ̂

Π(q′, t | θ)

1 − F (θ̂)
dF (θ). (71)

With the definition of Π in (3) we have

φ(q′, θ′; θ̂) =

{

pT − c(q′) if v(q′, θ̂) − pT > −pN ,
F (θ′)−F (θ̂)

1−F (θ̂)
pN + 1−F (θ′)

1−F (θ̂)
pT − c(q′) if v(q′, θ̂) − pT ≤ −pN .

(72)

Hence, φ is strictly decreasing in q′ if v(q′, θ̂) > pT − pN , or equivalently if θ′ < θ̂. Therefore,

any maximizer (q, θ) of φ(q′, θ′; θ̂) satisfies v(q, θ) − pT = −pN and θ ≥ θ̂, which are the

constraints in (29). Hence, since the bottom line on the right hand side in (72) coincides

with the objective in (28):

(q, θ) ∈ argmax
(q′,θ′)

φ(q′, θ′; θ̂) ⇔ (q, θ) = (q∗(θ̂, p), θ∗(θ̂, p)). (73)

Consequently: (q̂, θ̂) satisfies (24) and (25) ⇔ (q̂, θ̂) ∈ argmax(q′,θ′) φ(q′, θ′; θ̂) ⇔ (q̂, θ̂) =

(q∗(θ̂, p), θ∗(θ̂, p)) ⇔ (q̂, θ̂) satisfies (30). Q.E.D.

Proof of Lemma 4: For given θ̂, and for all (q′, θ′) denote the objective in (28) by

ψ(q′, θ′; θ̂) =
F (θ′) − F (θ̂)

1 − F (θ̂)
pN +

1 − F (θ′)

1 − F (θ̂)
pT − c(q′). (74)

Below, we show that under convexity of F , ψ is concave in (q′, θ′) for all θ. Moreover, since

pT > pN , it is evident that ψ is decreasing in q′ and θ′. Further, since v is quasi–concave

by assumption, the constraint v(q′, θ′) = pT − pN describes a convex curve in (q, θ)-space.

These three observations imply that the necessary first–order conditions for problem (28) are

already sufficient to deliver a maximum. That is, (q̂, θ̂) = (q∗(θ̂, p), θ∗(θ̂, p)) if and only if the

following Kuhn-Tucker conditions hold:

ψq′(q̂, θ̂; θ̂) − λvq(q̂, θ̂) = 0, (75)

ψθ′(q̂, θ̂; θ̂) − λvθ(q̂, θ̂) ≤ 0, (76)

v(q̂, θ̂) = pT − pN , (77)
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for some λ ∈ R. It is easy to see that these conditions are equivalent to (31) and (32). This

establishes the equivalence between (30) on the one and (31) and (32) on the other hand.

It remains to show that ψ is concave in (q′, θ′). Observe first that the cross-partials ψq′θ′

are zero. Thus, ψ is concave if and only if ψq′q′ and ψθ′θ′ are each negative. We have:

ψq′q′(q
′, θ′; θ) = −c′′(q′) and ψθ′θ′(q

′, θ′; θ) = −
F ′′(θ′)

1 − F (θ)
(pT − pN). (78)

Since c′′ > 0 by assumption, the left expression is negative. Further, since pT − pN > 0, a

sufficient condition for the right expression to be negative is that F ′′ ≥ 0, and this completes

the proof. Q.E.D.

Proof of Proposition 4: Insert pT − pN from (32) in (31), and observe that the seller’s

problem becomes thus independent of transfers. This yields the claim. Q.E.D.

Proof of Lemma 5: Consider a type θ′ ∈ (θ1, θ2) and suppose he chooses message m∗(θ′) in

equilibrium. We show that type θ′ is the only type who chooses message m∗(θ′), implying full

revelation of this type. Indeed, since q∗(·) is strictly increasing on I = [θ1, θ2] by assumption,

the seller chooses for each θ ∈ I, θ 6= θ′, a distinct quality q∗(θ) 6= q∗(θ′). This can only be

if each buyer type θ ∈ I, θ 6= θ′, chooses a message which is different from m∗(θ′). To see

that a type θ < θ1 does not choose message m∗(θ′), note that since x∗(·) = 1 on I, the type

θ1 prefers quality q∗(θ1) over the quality q∗(θ′). Thus, the single–crossing property vqθ > 0

implies that θ < θ1 strictly prefers q∗(θ1) over q∗(θ′). Hence, such a type does not choose the

message m∗(θ′) which would induce quality q∗(θ′). An identical argument shows that also a

type θ > θ2 does not choose the message m∗(θ′). Q.E.D.

Proof of Lemma 6: Let θ ∈ (θ1, θ2), and consider an equilibrium path (m∗, q∗, z∗S, z
∗
B) =

(m∗(θ), q∗(θ), z∗S(θ), z∗B(θ)). Since q∗(·) is strictly increasing on I we have that q∗ > 0. We

have to show that there is a message z′B ∈ ZB with x(m∗, z∗S, s
′
B) < 1 such that (39) holds.

To see this, let (ẑS, ẑB(·)) be the Bayesian Nash Equilibrium (BNE) of the continuation

game Γ(m∗, q∗) whose outcome is ẑS = z∗S, ẑB(θ) = z∗B. Since the seller knows the buyer’s

type by Lemma 5, the equilibrium conditions write:

p(m∗, z∗S, z
∗
B) ≥ p(m∗, z′S, z

∗
B) for all z′S ∈ ZS, (79)

x(m∗, z∗S, z
∗
B)v(q∗, θ) − p(m∗, z∗S, z

∗
B) ≥ x(m∗, z∗S, z

′
B)v(q∗, θ) − p(m∗, z∗S, z

′
B) (80)

for all z′B ∈ ZB. We next show that there is a message z′B ∈ ZB such that x(m∗, z∗S, z
′
B) < 1.

If the contrary were true, the buyer’s equilibrium message in Γ(m∗, q∗) would satisfy:

z∗B ∈ argmax
zB

v(q∗, θ) − p(m∗, z∗S, zB) (81)
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= argmax
zB

−p(m∗, z∗S, zB). (82)

(79) and (82) imply that (ẑS, ẑB(·)) is also a BNE of the continuation game Γ(m∗, 0) that

starts after the seller has chosen the quality q = 0. Hence, Condition 1 implies that for all

BNE (z̃S, z̃B(·)) ∈ E(m∗, 0) it holds that

p(m∗, z∗S, z
∗
B) = p(m∗, z̃S, z̃B(θ)). (83)

Thus, the seller gets the same payment in Γ(m∗, 0) as he gets in Γ(m∗, q∗). Since the quality

zero is less costly than q∗ > 0, the seller would therefore be better off by choosing zero quality

at stage 2, but this contradicts the condition that in equilibrium q∗ maximizes the seller’s

profit.

Accordingly, the set of messages z′B for which x(m∗, z∗S, z
′
B) < 1 is non–empty. Denote

this set by Z ′
B. We now show that there is a z′B ∈ Z ′

B such that (39) holds. Suppose to the

contrary that for all z′B ∈ Z ′
B the equality (39) does not hold. By (80), this implies that for

all z′B ∈ Z ′
B

x(m∗, z∗S, z
∗
B)v(q∗, θ) − p(m∗, z∗S, z

∗
B) > x(m∗, z∗S, z

′
B)v(q∗, θ) − p(m∗, z∗S, z

′
B). (84)

This inequality is also true for a quality q′ slightly below q∗ so that for all z′B ∈ Z ′
B

x(m∗, z∗S, z
∗
B)v(q′, θ) − p(m∗, z∗S, z

∗
B) > x(m∗, z∗S, z

′
B)v(q′, θ) − p(m∗, z∗S, z

′
B). (85)

Now, (79) and (85) imply that (ẑS, ẑB(·)) is also a BNE of the continuation game Γ(m∗, q′).

Hence, Condition 1 implies that for all (z̃S, z̃B(·)) ∈ E(m∗, q′) it holds that

p(m∗, z∗S, z
∗
B) = p(m∗, z̃S, z̃B(θ)). (86)

Thus, the seller gets the same payment in Γ(m∗, q′) as he gets in Γ(m∗, q∗). Since the quality

q′ is less costly than q∗, this contradicts the condition that in equilibrium q∗ maximizes the

seller’s profit. This establishes Lemma 6 Q.E.D.

Proof of Proposition 5: Consider an arbitrary interval I with x∗(·) = 1 on I. For each

θ ∈ I, let an equilibrium path be denoted by (m∗(θ), q∗(θ), z∗S(θ), z∗B(θ)). We have to show

that q∗(·) is not strictly increasing on I. We begin with an auxiliary observation:

q∗(·) is (weakly) increasing on I. Therefore it is continuous a.e. on I. (87)

Since x∗(·) = 1 on I, (87) follows from an incentive compatibility argument which is standard

and therefore omitted. The rest of the proof is by contradiction. Suppose that q∗(·) is strictly
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increasing on I. By (87), we can choose a θ ∈ I so that q∗(·) is continuous at θ. By Lemma

6, there is a message z′B with x ≡ x(m∗(θ), z∗S(θ), z′B) < 1 such that

v(q∗(θ), θ) − p(m∗(θ), z∗S(θ), z∗B(θ)) = x · v(q∗(θ), θ) − p(m∗(θ), z∗S(θ), z′B), (88)

where on the left hand side we have used that x(m∗(θ), z∗S(θ), z∗B(θ)) = x∗(θ) = 1. Let

ε = (1 − x)vθ(q
∗(θ), θ). (89)

vθ(q, θ) is continuous in q, and since Θ is compact, vθ(q, ·) is uniformly continuous on Θ.

Hence, there are δ1, δ2 > 0 such that for all q′, τ, τ ′ with |q∗(θ) − q′| < δ1 and |τ − τ ′| < δ2,

we have:

|vθ(q
∗(θ), τ) − vθ(q

′, τ ′)| < ε. (90)

Since q∗(·) is continuous at θ, we can find a θ′ ∈ I, θ′ < θ such that q∗(θ′) > 0 and

|q∗(θ) − q∗(θ′)| < δ1 and |θ − θ′| < δ2. (91)

With these preparations, we will now derive a contradiction. In equilibrium, type θ′ does

not gain by deviating to message m∗(θ) in period 1 and message z′B in period 3. Since

x(m∗(θ′), z∗S(θ′), z∗B(θ′)) = x∗(θ′) = 1, we therefore have:

v(q∗(θ′), θ′) − p(m∗(θ′), z∗S(θ′), z∗B(θ′)) ≥ x · v(q∗(θ), θ′) − p(m∗(θ), z∗S(θ), z′B). (92)

Further, type θ does not gain by imitating the equilibrium strategy of type θ′. Thus,

v(q∗(θ), θ) − p(m∗(θ), z∗S(θ), z∗B(θ)) ≥ v(q∗(θ′), θ) − p(m∗(θ′), z∗S(θ′), z∗B(θ′)). (93)

Combining (88) and (93) gives:

x · v(q∗(θ), θ) − p(m∗(θ), z∗S(θ), z′B) ≥ v(q∗(θ′), θ) − p(m∗(θ′), z∗S(θ′), z∗B(θ′)). (94)

By (92) and (94), we have:

v(q∗(θ′), θ) − v(q∗(θ′), θ′) ≤ x · [v(q∗(θ), θ) − v(q∗(θ), θ′)]. (95)

By the mean value theorem, there are τ, τ ′ ∈ [θ′, θ] such that the previous inequality writes

vθ(q
∗(θ′), τ ′)(θ − θ′) ≤ x · vθ(q

∗(θ), τ)(θ − θ′). (96)
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Thus, since θ − θ′ > 0 and vθ(q
∗(θ), τ) > 0, we obtain:

x ≥
vθ(q

∗(θ′), τ ′) − vθ(q
∗(θ), τ)

vθ(q∗(θ), τ)
+ 1 (97)

>
−ε

vθ(q∗(θ), τ)
+ 1 (98)

≥
−ε

vθ(q∗(θ), θ)
+ 1 (99)

= x, (100)

where the second inequality follows from (90) and (91), the third inequality follows because

τ ≤ θ implies that vθ(q
∗(θ), τ) ≤ vθ(q

∗(θ), θ), and the final inequality follows from (89). Thus,

we have arrived at a contradiction, and this proves the proposition. Q.E.D.

Proof of Proposition 6 (i) Consider qualities 0 < q∗1 < q∗2 and define the sets

Θi = {θ ∈ Θ | q∗(θ) = q∗i ∧ x
∗(θ) = 1}, i = 1, 2. (101)

We first proof the following:

Θ2 6= ∅ ⇒ Θ1 has measure zero. (102)

Suppose to the contrary that Θ2 6= ∅ and Θ1 has positive measure. Let (ẑS(m∗(θ)),

ẑB(m∗(θ), ·)) be a BNE of the game Γ(m∗(θ), q∗(θ)). Note that for all θ ∈ Θi, the equi-

librium payments have to be the same: p(m∗(θ), ẑS(m∗(θ)), ẑB(m∗(θ), θ)) = p∗i . For if there

were two types in Θi with different equilibrium payments, then since the chosen quality is

constant on Θi, the type with the higher payment could gain by sending the messages m and

zB of the type with the lower payment. Therefore, since no type in Θi has an incentive to

mimic the equilibrium strategy of a type in Θj, we have for all θi ∈ Θi:

v(q∗i , θi) − p∗i ≥ v(q∗j , θi) − p∗j . (103)

Next, since Θ1 has positive measure, Θ1 contains at least two types θ′1 < θ′′1 . Let m1 =

m∗(θ′1) with q(m1) = q∗1 be the message used by the type θ′1. Moreover, let m2 be some

message with q(m2) = q∗2 and m2 = m∗(θ2) for some θ2 ∈ Θ2. Further, define by θℓi =

inf{θ ∈ Θi | m
∗(θ) = mi} the lowest type in Θi who uses the message mi. We make use of

the following claims.

Claim 1 : There is a zi
B ∈ ZB such that v(q∗i , θℓi) − p∗i = −p(mi, ẑS(mi), z

i
B).

Claim 2 : p(m1, ẑS(m1), z
1
B) = p(m2, ẑS(m2), z

2
B).
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Claims 1 and 2 follow from arguments which are similar to the arguments used in the

proofs of Lemma 2 and Lemma 6. We omit the details. Claims 1 and 2 imply that

v(q∗1, θℓ1) − p∗1 = v(q∗2, θℓ2) − p∗2. (104)

Now, by continuity of v(q, ·), the inequality (103) carries over to the types θℓi:

v(q∗1, θℓ1) − p∗1 ≥ v(q∗2, θℓ1) − p∗2, v(q∗2, θℓ2) − p∗2 ≥ v(q∗1, θℓ2) − p∗1. (105)

Hence, (104) implies that v(q∗2, θℓ2) ≥ v(q∗2, θℓ1) and v(q∗1, θℓ1) ≥ v(q∗1, θℓ2). Consequently:

θℓ1 = θℓ2. Thus, since q∗1 < q∗2, (104) together with vqθ > 0 implies that for the type

θ′′1 > θ′1 ≥ θℓ1, we have

v(q∗2, θ
′′
1) − v(q∗1, θ

′′
1) > p∗2 − p∗1, (106)

a contradiction to (103). This establishes (102).

We can now demonstrate (i). If q∗(·) = 0 almost everywhere on Θ, the claim is true for

θ̂ = θ̄. So suppose there is a positive measure set Θ′ ⊆ Θ with q∗(·) > 0 and x∗(·) = 1 on

Θ′. By incentive compatibility q∗(·) is increasing on Θ′. It is well–known that this implies

that q∗(·) is continuous almost everywhere on Θ′. Thus, Proposition 5 entails that q∗(·) is

piece–wise constant on Θ′. Therefore, it follows from (102) that q∗(·) is in fact constant on

Θ′ except possibly at θ̂ = inf Θ′, and this implies (i).

(ii) Let (q∗, x∗) have the form described under (i). Let the exit option contract be given as

follows: M = {mℓ,mh}, ZB = {T,N} and ZS = ∅, and define x(m,N) = 0 and x(m,T ) = 1

for all m. Moreover, let p(mℓ, N) = p(mℓ, T ) = 0 and p(mh, N) = 0 and p(mℓ, T ) = v(q̂, θ̂).

It is easy to verify that (M,Z, x, p) implements (q∗, x∗). Q.E.D.
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