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Abstract

In standard auctions with symmetric, independent private value bidders resale cre-

ates a role for a speculator—a bidder who is commonly known to have no use value

for the good on sale. For second-price and English auctions the efficient value-bidding

equilibrium coexists with a continuum of inefficient equilibria in which the speculator

wins the auction and makes positive profits. First-price and Dutch auctions have an

essentially unique equilibrium, and whether or not the speculator wins the auction

and distorts the final allocation depends on the number of bidders, the value distribu-

tion, and the discount factor. Speculators do not make profits in first-price or Dutch

auctions.
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1 Introduction

Standard auctions—open English, sealed-bid first-price, sealed-bid second-price and Dutch—

are used in many instances where resale is permitted. For instance, a good purchased on

eBay can be resold on eBay. Nevertheless, much of the received theory of standard auctions

assumes that resale is not possible (cf. Klemperer’s 1999 literature survey). In environments

where any standard auction has an efficient equilibrium, so that no obvious motive for resale

exists, it is tempting to think that the absence of resale opportunities is an inconsequential

assumption. However, the assumption still matters.

This paper considers an environment with symmetric independent private value (SIPV)

bidders and an additional bidder, called speculator, who is commonly known to have no

use value for the good on sale. In the absence of a resale opportunity abstaining is, of

course, a dominant strategy for the speculator, and any standard auction allocates the good

efficiently and yields identical revenues (Vickrey, 1961). We show that if an inter-bidder

resale opportunity exists, the speculator can play an active role in any standard auction

format. If she is active, the final allocation is not efficient, and there is no longer allocation

or revenue equivalence across standard auctions.

The main insights are conveyed using just two bidders: a single bidder with a private use

value for the good and a speculator. The bidders engage in a 2-period interaction where first

a standard auction takes place and then the winner can make a take-it-or-leave-it offer to the

loser. We construct perfect Bayesian equilibria in undominated strategies. The equilibrium

constructions generalize, under appropriate assumptions, to environments with any number

of SIPV bidders (see Section 5). Moreover, the equilibria remain valid if any number of

speculators can bid in the auction (see Remark 3 and Remark 7).

In the case of first-price auctions we assume that, as in a Dutch auction, the loser’s bid

remains private. There exists an essentially unique equilibrium.1 The private-value bidder

uses a strictly increasing bid function and the speculator randomizes her bid in such a way

1The only possible source of multiplicity is that the speculator’s post-auction belief may allow for multiple

optimal resale offers; but this happens with probability 0 on the equilibrium path.
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that she may tie with any type of the private-value bidder. The speculator makes zero profit

in equilibrium: the larger her realized bid the larger her resale profit when she wins, but her

bid always equals her resale profit.

For second-price or English auctions there is a continuum of equilibria that differ by

allocation and profitability to the speculator. For each use value in the support of the

underlying probability distribution, there exists an equilibrium where all private-value bidder

types having lower use values abstain from the auction and wait for a resale offer from the

speculator while types having higher use values bid them and win the auction. Unlike in

a first-price or Dutch auction, a speculator can make profits in a second-price or English

auction. The larger the chosen use value, the larger the speculator’s equilibrium resale offer

and payoff.

Previous work on standard auctions with resale considers environments where resale is

required to achieve an efficient allocation.2 Haile (2000, 2003) evaluates the properties of

standard auctions in symmetric environments where precise information about use values

becomes available only after the initial auction. Haile (1999) and Bose and Deltas (2002)

consider environments where some bidders cannot participate in the initial auction.3 Finally,

Gupta and Lebrun (1999) examines a first-price auction with two asymmetric private-value

bidders who observe each other’s use value after the auction.4

Bose and Deltas (2002), as well as Bikhchandani and Huang (1989) in a multiple-unit

auction setting, appear to be the only auction models apart from ours that explicitly consider

0-value bidders. In both of these models the 0-value bidders represent intermediaries or

2There is also a growing literature on optimal auctions with resale, see Jehiel an Moldovanu (1999),

Ausubel and Crampton (1999), Calzolari and Pavan (2002), and Zheng (2002). Our model is closest to

Zheng. He considers general asymmetric environments with independent private values. At any stage,

including the initial stage, the current owner of the good chooses a mechanism that is optimal given that

each future owner will choose an optimal resale mechanism. Zheng’s main contribution is the construction

of an equilibrium that implements the initial-seller-optimal allocation via resale under certain assumptions.

Speculators are not needed in this construction and it is optimal for each current owner to exclude them.
3This motive for resale is proposed in Milgrom (1987).
4It is well-known that a first-price auction with asymmetric private-value bidders and no resale opportu-

nity is generally inefficient (see Krishna, 2002, Section 4.3.3).
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middlemen in environments like treasury bill auctions or large real-estate auctions where the

final consumers are confined to the resale market, while our model addresses how 0-value

bidders can “invade” markets with private-value bidders.

Section 2 introduces the model. In Section 3 we construct the equilibrium for first-price

and Dutch auctions with resale. Section 4 deals with equilibria for second-price and English

auctions with resale, and section 5 discusses the extension of the model to multiple SIPV

bidders.

2 Model

We consider environments with two risk-neutral bidders who are interested in purchasing a

single indivisible private good. Bidder 1 has the random use value θ̃1 ∈ [0, 1] for the good.

Let F denote the distribution function for θ̃1. We assume that F has a density f that is

positive and continuous on [0, 1] and is identically 0 elsewhere. Bidder 2 has the commonly

known use value θ2 = 0. We call bidder 2 a speculator.

We consider a 2-period interaction. Before period 1, bidder 1 privately learns the real-

ization of her use value, θ̃1 = θ1. In period 1, the good is offered via a sealed-bid first-price

auction or second-price auction without reserve price. The highest bidder becomes the new

owner of the good. To simplify the presentation we assume that bidder 1 wins all ties. The

period-1 winner either consumes the good in period 1 or makes a take-it-or-leave-it offer in

period 2; if she fails to resell the good she consumes it in period 2. Period-2 payoffs are

discounted according to a common factor δ ∈ (0, 1).5

Actions taken in period 2 may depend on information that is revealed during period 1. In

the first-price case we assume that the winner’s bid becomes public after the auction while the

loser’s bid remains private. In the second-price auction case, we assume that the loser’s bid

becomes public while the winner’s bid remains private. These bid revelation assumptions

5The equilibria we construct remain valid without discounting (δ = 1), but it seems worthwhile to

emphasize that the constructions are robust to discounting. The only instance where we actually use the

discounting assumption δ < 1 is in the equilibrium uniqueness proof in the first-price auction setting.
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make the first-price auction strategically equivalent to a Dutch auction (which stops at

the moment the winner’s bid is revealed) and make the second-price auction strategically

equivalent to an English auction (which stops at the moment the loser’s bid is revealed).

We will say that the speculator plays an active role if she wins the auction in period 1

with positive probability.

3 First-price/Dutch auctions with resale

In this section we construct and discuss the perfect Bayesian equilibrium of a first-price

auction with resale. Additional notation is required. Let β1 denote bidder 1’s bid as a

function of her use value and H denote the probability distribution for bidder 2’s (possibly

randomized) bid b̃2. The probability distribution Π(· | b2) describes bidder 2’s post-auction

belief about bidder 1’s use value if bidder 2 bids b2 and wins. T (b2) denotes bidder 2’s resale

offer. For all bids b1 ≥ 0 and θ1 ∈ [0, 1], bidder 1’s payoff is

u1(b1, θ1) = H(b)(θ1 − b1) + δ

∫
(b1,∞)

1θ1≥T (b)(θ1 − T (b))dH(b). (1)

For all bids b2 ≥ 0, bidder 2’s payoff is

u2(b2) = Pr[β1(θ̃1) < b2](−b2 + (1− Π−(T (b2) | b2))δT (b2)), (2)

where Π−(p | b2) = limp′↗p Π(p′ | b2) (for all p ≥ 0) denotes the posterior probability that

bidder 1’s use value is less than p. The perfect Bayesian equilibrium conditions are Bayes rule

(3), optimality of the resale offer (4), and optimal bidding (5, 6), as shown in the following

Definition 1 A tuple (β1, H, T, Π) is a perfect Bayesian equilibrium for the first-price auc-

tion with resale if

∀θ1 ∈ [0, 1], b2 ≥ 0 :

Π(θ1 | b2) Pr[β1(θ̃1) < b2] = Pr[θ̃1 ≤ θ1, β1(θ̃1) < b2], (3)

∀b2 ≥ 0 : T (b2) ∈ arg max
p≥0

(1− Π−(p | b2))p, (4)
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∀θ1 ∈ [0, 1] : β1(θ1) ∈ arg max
b1≥0

u1(b1, θ1), (5)

Pr[b̃2 ∈ arg max
b≥0

u2(b)] = 1, (6)

where b̃2 is distributed according to H.

Proposition 1 describes the equilibrium. Condition (7) says that the bid of any bidder-1

type θ1 equals the discounted profit of a monopolist who faces the bidder-1 types in [0, θ1].

Bidder 2 randomizes her bid according to (8), in which the distribution H is constructed

such that bidder 1’s bid function is optimal. In particular, the support of H equals bidder

1’s bid range [0, β1(1)].6 The resale offer function (10) follows from the post-auction beliefs

(9): if bidder 2 wins then she believes that the highest losing type of bidder 1 is the type

that would have resulted in a tie.

Proposition 1 A tuple (β1, H, T, Π) is a perfect Bayesian equilibrium for the first-price

auction with resale if and only if conditions (7) (8), (9), and (10) hold.

∀θ1 ∈ [0, 1] : β1(θ1) = δ max
p≥0

F (θ1)− F (p)

F (θ1)
p. (7)

∀b2 ∈ (0, β1(1)] : H(b2) = e
−

∫ β1(1)
b2

1
(1−δ)φ1(b)−b+δT (b)

db
, (8)

where φ1 denotes the inverse of β1.

∀b2 ≥ 0, θ1 ∈ [0, 1] : Π(θ1 | b2) = min{ F (θ1)

F (φ1(b2))
, 1}, (9)

6The feature that the private-value bidder (bidder 1) uses a strictly increasing bid function while an

additional bidder with no private information (bidder 2) randomizes her bid already appears in Vickrey (1961,

Appendix III). He constructs an equilibrium for first-price auctions without resale in a 2-bidder environment

where one bidder has a private uniformly distributed valuation and the other has a commonly known strictly

positive valuation. The structure of Vickrey’s equilibrium differs from ours in important respects. First,

the winning probability of Vickrey’s commonly-known-value bidder tends to 0 as her valuation tends to 0,

while the speculator wins with a positive probability although her use value equals 0. Second, Vickrey’s

commonly-known-value bidder obtains a strictly positive equilibrium payoff while the speculator obtains 0.

Third, in Vickrey’s equilibrium the private-value bidder wins the auction with probability 0 if her valuation

is sufficiently close to 0, while in our equilibrium every non-zero type wins with positive probability.
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where we define φ1(b2) = 1 for all b2 > β1(1).

∀b2 ≥ 0 : T (b2) ∈ arg max
p≥0

p(F (φ1(b2))− F (p)). (10)

Several properties of the equilibrium are worth mentioning. First, the equilibrium is

essentially unique.7 In particular, there exists no equilibrium where the speculator is not

active. Second, although the speculator plays an active role, speculation is not profitable:

bidder 2’s payoff equals 0 because bidder 1’s bid function (7) is such that, for all bids b in

the range of bidder 1’s bid function, bidder 2’s discounted resale profit equals b if she bids b.

Third, the final allocation is inefficient with positive probability, even in the limit δ → 1.8

The reason is that, because the losing bid remains private, bidder 1 retains some private

information when she enters the resale market, so that with positive probability the resale

offer is unacceptably high.9 Because in the absence of a resale opportunity the allocation

would be efficient, we obtain the conclusion that a resale opportunity can be detrimental to

efficiency.

The proof of Proposition 1 can be summarized as follows. The core step is to show that

in any perfect Bayesian equilibrium bidder 2’s payoff equals 0. Bidder 2’s payoff is, for each

possible bid, determined by the set of bidder-1 types against which the bid wins. Hence,

the 0-payoff condition for bidder 2 determines a unique strictly increasing bid function for

7If condition (10) is satisfied for two functions T = T ′ and T = T ′′ then Pr[T ′(b̃2) = T ′′(b̃2)] = 1, where

b̃2 denotes a random variable with distribution H. This follows because Edlin and Shannon’s (1998) strict

monotone comparative statics techniques show that the arg max-correspondence from which T is selected in

(10) is strictly increasing and thus its set of points of multiple-valuedness is countable (and thus has measure

0 according to H).
8An inefficiency would also occur in an model without resale if bidder 2 had a commonly known strictly

positive use value, but the equilibrium outcome would still be qualitatively different from that of Proposition

1; cf. footnote 6.
9This is not saying that the final allocation would be efficient if the losing bid were revealed. Krishna

(2002, Section 4.4) considers first-price auctions with two asymmetric private-value bidders where the loser’s

bid is revealed and the winner can make a take-it-or-leave-it offer to the loser. Krishna shows that the

anticipation of resale prevents bidders from using strictly increasing bid functions. Thus, bidders retain

some private information when they enter the resale market.
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bidder 1. Finally, there exists a unique bid distribution for bidder 2 such that no bidder-1

type wants to deviate from her bid.

Lemma 1 contains the main insight towards establishing the 0-profit claim for bidder 2.

The lemma shows that bidder 2 makes, with positive probability, arbitrarily small bids. If

bidder 2’s bid distribution has an atom at the infimum bid b, the proof is as follows. Suppose

that b > 0. Because no bidder-1 type bids higher than her use value, the bid b > 0 wins with

positive probability. Hence, to avoid expected losses for bidder 2 the resale price T (b) must

exceed b/δ, and there must exist some bidder-1 types greater than T (b) who are overbid by

bidder 2’s bid b in the auction and accept the resale price T (b). For these bidder-1 types it

is profitable to deviate to a bid slightly above b. In doing so, they win against bidder 2’s

bid b and avoid the higher discounted resale price δT (b)—a contradiction. If bidder 2’s bid

distribution has no atom at b the proof is similar, but some limit arguments are needed; the

details can be found in the proof below.

Lemma 1 A tuple (β1, H, T, Π) is a perfect Bayesian equilibrium for the first-price auction

with resale only if H(b) > 0 for all b > 0.

Proof. As a preliminary step, observe that a bidder-1 type who wins with positive

probability will not bid above her use value because she cannot resell the good at any

positive price,

∀θ1 ∈ [0, 1], H(β1(θ1)) > 0 : β1(θ1) ≤ θ1. (11)

Let b = inf{b | H(b) > 0}. Suppose that b > 0. Let U2 ≥ 0 denote bidder 2’s equilibrium

payoff.

Suppose that H(b) = 0; i.e., no atom at b (the case H(b) > 0 is treated in the text

above). Let Θ = {θ1 | β1(θ1) ≤ b}. By (11),

[0, b] ⊆ Θ. (12)

For all b > b with u2(b) = U2,

0 ≤ u2(b) = Pr[β1(θ̃1) < b]
(
−b + Pr[θ̃1 ≥ T (b) | β1(θ̃1) < b] δT (b)

)
.

8



By (12), Pr[β1(θ̃1) < b] > 0, hence

∀b > b, u2(b) = U2 : Pr[θ̃1 ≥ T (b) | β1(θ̃1) < b] δT (b) > b. (13)

Therefore, T (b) > b and thus

Pr[θ̃1 < T (b) | β1(θ̃1) < b] ≥ Pr[θ̃1 < b | β1(θ̃1) < b]
(12)

≥ Pr[θ̃1 < b] = F (b).

Defining ξ = 1− F (b) < 1 and using (13), we find

∀b > b, u2(b) = U2 : ξδT (b) > b. (14)

Let (bm)
m∈IN be any sequence such that bm → b as m → ∞, and u2(b

m) = U2 and bm > b

for all m. Because some type θm accepts the resale price T (bm), there exists a sequence

(θm)
m∈IN such that β1(θ

m) < bm and θm ≥ T (bm) for all m.

Fix a bid b1 ∈ (b, b/ξ). We now show that a deviation to bid b1 is profitable for type θm

if m is sufficiently large. Let m be so large that β1(θ
m) < b1. Then

u1(b1, θ
m)− u1(β1(θ

m), θm)

= H(b1)(θ
m − b1)−H(β1(θ

m))(θ1 − β1(θ
m))

−
∫

(β1(θm),b1]

1θm≥T (b)δ(θ
m − T (b))dH(b)

(14)

≥ H(b1)(θ
m − b1)−H(β1(θ

m))(θ1 − β1(θ
m))

−(δθm − b/ξ)(H(b1)−H(β1(θ
m)))

≥ (H(b1)−H(β1(θ
m))(b/ξ − b1)−H(β(θm))(θ1 − β1(θ

m)).

This implies u1(b1, θ
m) > u1(β1(θ

m), θm) for large m because H(β1(θ
m)) → 0 as m → ∞.

This contradicts (5). QED

We now provide the proof of Proposition 1.
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Proof of Proposition 1. We begin with the “only-if”-part. The first step is to show

that bidder 2’s payoff U2 = 0 in any perfect Bayesian equilibrium. Suppose to the contrary

that U2 > 0. By Lemma 1, arbitrarily small bids yield the positive payoff U2. Hence, a

positive mass of bidder-1 types must be bidding 0. But an argument similar to that in the

proof of Lemma 1 shows that for some of these types it is profitable to deviate to a small

positive bid—a contradiction.

Bidder 1’s bid function β1 is strictly increasing and continuous (so that it has a continuous

inverse φ1),
10 and every positive type bids lower than her use value (because she cannot sell

the good at any positive price). Hence, bidder 2’s post-auction beliefs Π satisfy (9) and her

resale price function T satisfies (10). Therefore, bidder 2’s payoff function (2) is given by

∀b2 ≥ 0 : u2(b2) = F (φ1(b2))

(
−b2 + δ max

p≥0

F (φ1(b2))− F (p)

F (φ1(b2))
p

)
. (15)

Bidder 2’s bid distribution H has the support [0, β1(1)].
11 By Berge’s Maximum Theorem,

u2 is continuous. Hence, any bid in the support of H yields the equilibrium payoff:

∀b2 ∈ [0, β1(1)] : u2(b2) = U2 = 0. (16)

Formula (7) is straightforward from (15) and (16).

Finally, H is determined by the condition that the bid function β1 is locally optimal. For

any b ∈ (0, β1(1)), consider the effect of a marginal bid increase of type θ1 = φ1(b). With

marginal probability H ′(b), she gains the auction winning payoff θ1 − b and loses the resale

payoff θ1 − T (b), and with her winning probability H(b) there is a marginal increase of her

auction payment. Therefore, her first-order condition is

0 =
∂u1

∂b
(b, θ1)

∣∣∣∣
θ1=φ1(b)

= H ′(b)(φ1(b)− b− δ(φ1(b)− T (b))−H(b). (17)

10All this follows from standard arguments. Using δ < 1 one shows that bidder 1’s payoff function (1)

has strictly increasing differences, hence β1 is weakly increasing. If β1 had a flat part, optimality of bidder

2’s bid distribution (6) would prevent her from making bids just below the flat part, which contradicts the

optimality of β1. If β1 had a jump, bidder 2 would also not bid in the resulting gap of bidder 1’s bid

distribution, which contradicts the optimal bidding condition (5) for types just above the jumping type.
11The upper end of the support is β1(1) because no bidder will bid higher than necessary to win for

sure. The lower end is 0 by Lemma 1. If the distribution had a gap, some bidder-1 type would be bidding

unnecessarily high.
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This yields a differential equation for H which together with the boundary condition H(β1(1)) =

1 has the unique solution (8). The above argument is incomplete because one cannot assume

that H is differentiable. However, revealed preference arguments for bidder 1 can be used

to show that H is Lipschitz continuous on [b′, β1(1)] for all b′ > 0, so that H is differentiable

almost everywhere and the above arguments go through.

The main step in the proof of the “if”-part of Proposition 1 is that bidder 1’s payoff

function (1) is quasi-concave so that bidder 1’s bid function (7) is globally optimal; the

proof is straightforward. QED

Remark 1: If the initial seller sets a small reserve price, the speculator still plays an

active role.12 Precisely, there is no equilibrium where the speculator does not play an active

role. To see this, consider a first-price auction with a reserve price r > 0 and suppose that

bidder 2 wins the auction with probability 0. This implies that she does not submit a bid of

r or greater because such a bid would win against bidder-1 types below r. Hence, no bidder-1

type will bid more than r. But then it is profitable for bidder 2 to deviate to a bid just

above r and win the auction, provided r is not too large. Hence, we have a contradiction.

Remark 2: The speculator still plays an active role if we extend the bidders’ preferences

by assuming a small bid preparation cost (to be paid simultaneously with submitting any

strictly positive bid). The argument is the same as with a small reserve price.

Remark 3: The equilibrium remains valid with free entry of multiple speculators: ab-

staining is optimal for a second speculator because she obtains the same zero payoff as bidder

2 from any bid in [0, β1(1)]. There also exist equilibria with multiple active speculators: bid-

der 1 still uses the bid function (7), and the distribution function for the maximum bid

among all speculators (including bidder 2) is given by (8).

12 A reserve price that is revenue maximizing in the absence of resale will shut out the speculator (because

this price exceeds the resale profit even if the speculator wins the initial auction for sure).
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Remark 4: The equilibrium construction of Proposition 1 can be extended to environ-

ments where bidder 2 has a known use value θ2 > 0. Two properties of the equilibrium are

worth emphasizing. First, the initial seller’s revenue is higher than in the absence of a resale

opportunity if δ is close to 1. Second, bidder 2’s payoff is strictly positive, but tends to 0

as δ → 1. To see the revenue claim, observe first that if a bidder-1 type below δθ2 wins the

auction then she will offer the good for resale to bidder 2 at price θ2. Hence, a Bertrand

argument shows that δθ2 is a lower bound for the winning bid in the auction. In the absence

of a resale opportunity (see Vickrey, 1961, Appendix III, for the construction of an equilib-

rium; cf. footnote 6) bidder 2’s highest equilibrium bid b < θ2. Hence an upper bound for

the winning bid is given by b < δθ2 if δ is close to 1. To see the second property mentioned

above, concerning bidder 2’s equilibrium payoff, one first uses an argument similar to that

of Lemma 1 to show that the lower end of bidder 2’s bid distribution b < θ2. Because with

bid b ∈ [δθ2, θ2] bidder 2 does not win against the types above b, bidder 2’s payoff cannot

exceed F (b)(θ2 − b). On the other hand, the expression F (b)(θ2 − b) is a lower bound for

bidder 2’s payoff with any bid b ∈ [δθ2, θ2] because the bidder-1 types above δθ2 will not bid

higher than their use values. Hence, bidder 2’s payoff equals maxb∈[δθ2,θ2] F (b)(θ2− b), which

is positive and tends to 0 as δ → 1.

4 Second-price/English auctions with resale

In this section we construct and discuss a continuum of pure-strategy perfect Bayesian equi-

libria for second-price auctions with resale where the speculator plays an active role. Here,

β1 denotes bidder 1’s bid as a function of her use value and b̂2 denotes bidder 2’s bid (in

contrast to the first-price auction setting, we do not consider randomized bidding of the

speculator because it is not needed for the equilibrium construction). For any bidder-1 bid

b1 ≥ 0, the probability distribution Π(· | b1) describes bidder 2’s post-auction beliefs about

bidder 1’s use value if bidder 2 wins at price b1. T (b1) denotes bidder 2’s resale offer. For all

12



b1 ≥ 0 and θ1 ∈ [0, 1], bidder 1’s payoff is

u1(b1, θ1) =


θ1 − b̂2 if b1 ≥ b̂2,

δ(θ1 − T (b1)) if b1 < b̂2, T (b1) ≤ θ1,

0 if b1 < b̂2, T (b1) > θ1.

For all bids b2 ≥ 0, bidder 2’s payoff is

u2(b2) = E
[
−β1(θ̃1)1b2>β1(θ̃1) + δT (β1(θ̃1))1b2>β1(θ̃1), θ̃1≥T (β1(θ̃1))

]
. (18)

The perfect Bayesian equilibrium conditions are Bayes rule (19), optimality of the resale

offer (20), and optimal bidding (21, 22), as shown in the following

Definition 2 A tuple (β1, b̂2, T, Π) is a perfect Bayesian equilibrium for the second-price

auction with resale if

∀θ1 ∈ [0, 1], b1 ≥ 0 :

∫
[0,b1]

Π(θ1 | b)dG(b) = Pr[θ̃1 ≤ θ1, β1(θ̃1) ≤ b1], (19)

where G denotes the distribution function for β1(θ̃1),

∀b1 ≥ 0 : T (b1) ∈ arg max
p≥0

(1− Π−(p | b1))p, (20)

where Π−(p | b1) = limp′↗p Π(p′ | b1) denotes the posterior probability that bidder 1’s use

value is less than p,

∀θ1 ∈ [0, 1] : β1(θ1) ∈ arg max
b1≥0

u1(b1, θ1), (21)

and

b̂2 ∈ arg max
b2≥0

u2(b2). (22)

Proposition 2 describes the equilibria. Bidder 1’s bid function (23) is such that all types

below some fixed parameter θ∗ pool at the bid 0 (or, equivalently, abstain from the auction)

while the types above θ∗ bid their use values. In particular, in equilibrium bidder 1 does not

make a bid in (0, θ∗).13 Bidder 2’s bid (24) lies in (0, θ∗) and is such that the bidder-1 type

13The shape of bidder 1’s bid function—a pool of low types, a gap in the bid distribution, and above

that a strictly increasing segment—resembles the symmetric equilibrium bid functions derived in Jehiel and
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θ∗ is indifferent between overbidding bidder 2 and waiting for a resale offer. Bidder 2’s resale

offer function (25) follows from her post-auction beliefs (26). If bidder 2 wins at price 0 she

believes that bidder 1’s type is chosen from [0, θ∗]; if bidder 2 wins at a price in (θ∗, 1] she

believes that bidder 1’s type equals the auction price; if bidder 2 wins at an off-equilibrium

price in (0, θ∗) she believes that bidder 1’s type equals θ∗.14

Proposition 2 For every θ∗ ∈ [0, 1], the second-price auction with resale has a perfect

Bayesian equilibrium (β1, b̂2, T, Π) with the properties (23), (24), (25), and (26).

β1(θ1) =

 0 if θ1 ∈ [0, θ∗),

θ1 if θ1 ∈ (θ∗, 1].
(23)

b̂2 = θ∗ − δ (θ∗ − T (0)) . (24)

For all b1 ∈ [0, 1],

T (b1) =


∈ arg maxp≥0 p(F (θ∗)− F (p)) if b1 = 0,

θ∗ if b1 ∈ (0, θ∗),

b1 if b1 ∈ (θ∗, 1].

(25)

For all θ1 ∈ [0, 1] and b1 ∈ [0, 1],

Π(θ1 | b1) =


min{F (θ1)/F (θ∗), 1} if b1 = 0 and θ∗ > 0,

1θ1≥θ∗ if b1 ∈ (0, θ∗),

1θ1≥b1 if b1 ∈ (θ∗, 1].

(26)

Moldovanu (2000) and Haile (2000) for second-price auctions with a binding reserve price in environments

with positive externalities (such as the externalities arising from resale markets with complete information).

In these models, the size of the pool is determined by a trade-off arising from the fact that the positive

externality vanishes if the initial seller keeps the good. In particular, in contrast to our model, there is no

pooling in the absence of a reserve price, and there is no continuum of possible equilibrium pool sizes.
14The equilibrium with θ∗ = 1 is similar in spirit to an equilibrium constructed by Zheng (2000, Section

5.2) for an optimal auction a la Myerson (1981) with two private-value bidders. According to Zheng’s

construction, one bidder, if her use value is sufficiently high submits a high bid that wins for sure, and

otherwise she abstains. The other bidder bids the reserve price if her use value is sufficiently high and

otherwise she abstains. Zheng emphasizes that according to his equilibrium the resale opportunity reduces

the initial seller’s revenue.
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Several properties of the equilibria of Proposition 2 are worth emphasizing. First, equi-

libria where the speculator plays an active role (θ∗ > 0) coexist with an equilibrium where

both bidders bid their use values so that no active resale market arises (θ∗ = 0). Second,

speculation is profitable in any equilibrium with θ∗ > 0 because the speculator wins at price 0

and sells at a positive price. In fact, Proposition 2 shows that any speculator payoff between

0 and δ maxp≥0 p(1 − F (p)) is supported by an equilibrium. Third, the final allocation is

inefficient with positive probability in any equilibrium with θ∗ > 0, even in the limit δ → 1.

The inefficiency arises because the losing bidder-1 types pool at the same bid, which implies

that bidder 1 retains some private information when she enters the resale market. Forth,

bidder 1’s equilibrium strategy is not weakly dominated, and bidder 2’s equilibrium strategy

is not weakly dominated if δ is sufficiently close to 1. In particular, if δ > b̂2 then bidder 2’s

equilibrium strategy is not dominated by a strategy where she makes a bid b′2 < b̂2 (bidder-1

types close to 1 may bid just below b̂2, in which case bidder 2’s profit conditional on winning

at a price just below b̂2 approximates δ − b̂2 > 0).15

The proof of Proposition 2 is straightforward. No bidder-1 type profits from a deviation

to a bid in (0, b̂2) because, by the off-equilibrium beliefs defined in (26), the deviation leads

to the high resale price θ∗ rather than the resale price T (0) < θ∗ that results from bidding

0.16 By (24), all bidder-1 types below θ∗ prefer bidding 0 and waiting for a resale offer to

overbidding bidder 2. The bidder-1 types above θ∗ have the opposite preference. For bidder

2 any bid in (0, θ∗] is equally good because she wins at price 0; it is harmful to bid higher

15The second-price auction without resale also has a continuum of equilibria parameterized by θ∗ where

bidder 1 uses a bid function β1 satisfying (23) and bidder 2 submits the bid θ∗, but the equilibria with θ∗ > 0

are in weakly dominated strategies and they break down if an arbitrarily small reserve price is introduced

(cf. Remark 5). See Blume and Heidhues (2001, 2004) for a characterization of the entire set of equilibria

of the second-price auction without resale in environments with independent private values having identical

support, and for a proof that only the bid-your-value equilibrium remains if an arbitrarily small reserve price

is introduced.
16The off-path beliefs defined in (26) satisfy the intuitive criterion. There exist beliefs different from (26)

that also support our equilibria. For example, the off-equilibrium beliefs could be identical to bidder 2’s

beliefs when she wins at price 0 (this was suggested to us by Bill Zame). More generally, our equilibria are

supported by any off-equilibrium beliefs that lead to a resale price greater than or equal to T (0).
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than θ∗ because in the event that bidder 2 needs such a high bid in order to win, she must

sell at a price equal to her auction payment.

Remark 5: If the initial seller sets a reserve price that is not too large, equilibria with

sufficiently large parameters θ∗ remain valid.17 More precisely, with reserve price r the

equilibria such that maxp≥0 p(F (θ∗)− F (p)) ≥ rF (θ∗) remain valid.

Remark 6: The equilibria remain essentially valid if we extend the bidders’ preferences

by assuming a small bid preparation cost (to be paid when submitting a strictly positive

bid). In fact, such costs would add additional stability to our equilibria because the bidder-1

types below the resale price T (0), who in the absence of bid preparation costs are indifferent

between bidding 0 and bidding, say, their values, would find it strictly optimal to bid 0.

Remark 7: The equilibria remain valid with free entry of multiple speculators. A second

speculator can conceivably make a profit only if she overbids bidder 2’s bid b̂2. Her best hope

is a bid in the interval (b̂2, θ
∗] (if she needs a bid above θ∗ in order to win, the highest use

value in the market does not exceed her payment in the auction). Any such bid yields a

resale revenue smaller than T (0), and hence smaller than b̂2, showing that she would make

a loss.

Remark 8: The equilibrium construction of Proposition 2 can be extended to environ-

ments where bidder 2 has a known use value θ2 > 0. For every θ∗ > θ2 and δ sufficiently close

to 1, there exists like before an equilibrium where all bidder-1 types above θ∗ bid their use

values and all types below θ∗ submit losing bids. The reason this equilibrium construction

breaks down for small discount factors δ is that it would optimal for bidder 2 to consume

the good upon winning.

17If a reserve price that is revenue maximizing in the absence of resale is set, all equilibria with θ∗ > 0

break down. The argument is similar to the first-price auction setting, cf. footnote 12.
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Remark 9: Final allocation and initial seller revenue differ across standard auction

formats.18 Precisely, none of the equilibria of Proposition 2 for second-price and English

auctions with resale yields the same final allocation (and only one yields the same revenue)

as the equilibrium of Proposition 1 for a first-price or Dutch auction with resale. According

to the equilibrium of Proposition 1, every non-zero bidder-1 type wins the initial auction

with positive probability. But in every θ∗-equilibrium with θ∗ > 0, bidder 2’s resale price

is positive, so that any sufficiently small bidder-1 type obtains the good with probability 0,

and if θ∗ = 0 the allocation is efficient.

5 Extension to multiple private-value bidders

This section summarizes the extension of our model to environments with multiple symmet-

ric independent private value bidders (henceforth called regular bidders) and a speculator.

Details can be found in an online supplement. The main additional assumptions are that

the value distribution F for the regular bidders has an increasing hazard rate, and that we

focus on equilibria such that all regular bidders use the same bid function that is strictly

increasing in the winning range and such that all bidders who expect to win with probability

0 bid 0. Concerning resale mechanisms we cover two possibilities: the resale seller may use

any standard auction with an optimal reserve price, or she may be a mechanism designer

who uses an optimal mechanism.

The basic result that a speculator can play an active role and cause a distortion of the

final allocation in any standard auction remains valid, although in the case of first-price and

Dutch auctions this will depend on the number of bidders, the value distribution, and the

discount factor. The result that a speculator can make profits in second-price and English

auctions, but not in a first-price or Dutch auction, also remains true.

18The failure of allocation equivalence contrasts earlier comparisons of standard auction formats with resale

such as Haile (2003), where the focus is mainly on revenue comparisons because appropriate assumptions

about the environment and the equilibria usually guarantee that the final allocation is efficient and hence

identical across auction formats.

17



It is particularly instructive to understand why the speculator can play an active role

in a first-price or Dutch auction with any number n ≥ 2 of regular bidders.19 Consider a

distribution F such that, except at points close to 1, the density is that of an exponential

distribution; i.e., F (θ) = 1− e−zθ, for some z ∈ (0, 1). When the point 1 is approached, the

density suddenly peaks. Such a distribution has a constant hazard rate up to values close

to 1, but then the hazard rate increases sharply. Suppose that the speculator does not play

an active role. Then all regular bidders use the standard no-resale equilibrium bid function

βI. To obtain a contradiction we show that if the discount factor δ is sufficiently close to 1,

a profitable deviation for the speculator is to bid βI(1) in the auction and offer the good at

a price just below 1 in the resale market. The argument is as follows. By definition of βI,

the bid βI(1) equals the expectation of the distribution F n−1, which approximates

η(z, n) = (n− 1)
1

z

∫ z

0

τe−τ (1− e−τ )n−2dτ + 1− (1− e−z)n−1. (27)

The resale revenue approximates the probability that at least one bidder has a use value

close to 1,

ρ(z, n) = 1− (1− e−z)n. (28)

Using the Taylor expansion for e−z, one finds that for z ≈ 0, ρ(z, n) = 1 − zn + O(zn) and

η(z, n) = 1 − 1
n
zn−1 + O(zn−1).20 Therefore, ρ(z, n) > η(z, n) for small z. Hence, when the

discount factor is close to 1, the bid βI(1) is profitable for the speculator, a contradiction to

the claim that the speculator does not play an active role.

A question that arises specifically in environments with multiple regular bidders is whether

the presence of a resale opportunity increases or decreases initial seller revenue (the answer

is trivial in environments with a single regular bidder because in the absence of resale the

revenue is zero). Concerning first-price and Dutch auctions, the answer is that resale never

reduces initial seller revenue, and strictly increases it if the speculator plays an active role.

In a second-price or English auction a resale opportunity may strictly increase or decrease

19It is easy to find examples where the speculator does not play an active role. The uniform distribution

F together with any discount factor δ and any n ≥ 2 will do.
20We use the notation O(zl) for any function ε(z) with the property ε(z)/zl → 0 as z → 0.
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initial seller revenue: equilibria with a low winning probability of the speculator correspond

to a revenue increase, while equilibria with a high winning probability of the speculator

correspond to a revenue decrease.

A final result is that the presence of a resale opportunity can decrease initial seller revenue

in second-price and English auctions in an extended game where the initial seller can set

an arbitrary reserve price for the initial auction. This result is important because it shows

that the impact of a resale opportunity on initial seller revenue does not always vanish in

environments where both the initial seller and the resale seller have access to the same class

of sales mechanisms (second-price or English auctions with arbitrary reserve prices).
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“Speculation in Standard Auctions with Resale”

By Rod Garratt and Thomas Tröger

May 4, 2005

Abstract

We extend the model presented in the Note “Speculation in Standard Auctions with

Resale” by the same authors to environments with multiple symmetric independent-

private-value bidders and prove the results stated in Section 5 of the Note.

Keywords: standard auctions, speculation, resale, efficiency

JEL code: D44

In Section 1, we extend the model from Garratt and Tröger (2005), subsequently referred

to as the Note, to environments with multiple private-value bidders. Section 2 deals with

first-price and Dutch auctions. Section 3 is devoted to second-price auctions. Section 4

explains that the second-price auction results remain valid for English auctions.

1



1 Extending the model to multiple private-value bid-

ders

We consider environments with n ≥ 2 risk-neutral bidders i = 1, . . . , n, called regular bidders,

who are interested in consuming a single indivisible private good, and an additional risk-

neutral bidder s called the speculator. Let I = {1, . . . , n}. Let θ̃i ∈ [0, 1] denote the use

value of bidder i ∈ I for the good, and let θ̃s = θs = 0 denote the speculator’s use value

for the good. For all i ∈ I ∪ {s}, let θ̃
(1)
−i = maxj∈I\{i} θ̃j denote the random variable

for the highest use value among bidders other than i. The random variables θ̃1, . . . , θ̃n

are stochastically independent, and each θ̃i (i ∈ I) is distributed according to the same

distribution F . We assume that F has a density f that is positive and continuous on [0, 1]

and identically 0 elsewhere. Because each bidder privately learns her realized use value

before the interaction begins we say, following Vickrey (1961), that the bidders 1, . . . , n are

symmetric with independent private values (SIPV). We make the standard assumption that

F has a weakly increasing hazard rate.

Assumption 1 The mapping θ 7→ f(θ)/(1− F (θ)) is weakly increasing on [0, 1).

We consider a 2-period interaction. In period 1, the good is offered via a sealed-bid first-

price auction or second-price auction without reserve price (our analysis extends to English

and Dutch auctions, see below). The highest bidder becomes the new owner of the good.

Our results do not depend on the tieing rule, but to simplify some proofs we assume that

the speculator loses all ties. The bidder who wins in period 1 either consumes the good in

period 1 or offers the good for resale in period 2; if she fails to resell the good she consumes

it in period 2. Period-2 payoffs are discounted according to a common factor δ ∈ (0, 1).

Modelling Period 1—the auction

Because our focus is on the impact of the speculator, and the regular bidders are ex ante

identical, we will focus on equilibria such that all regular bidders use the same bid function
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β in period 1. This bid function is assumed to be strictly increasing in the winning range

(this simplifies the computation of post-auction beliefs). Moreover, any regular-bidder type

who does not expect to ever win the auction does not participate (formally, we assume such

a type bids 0, but we will show that with bid 0 she never wins).1

Assumption 2 In equilibrium, all regular bidders use the same bid function β in period 1.

For all θ, θ′ ∈ [0, 1] with θ > θ′, we have β(θ) > β(θ′) if the bid β(θ′) wins in equilibrium

with positive probability, and have β(θ′) = 0 otherwise.

For later use, let us introduce some notation for random vectors of bids and highest

order statistics. For all i ∈ I, let b̃i = β(θ̃i) denote the random variable for i’s bid. Let b̃s

denote an independent random variable for the speculator’s, possibly randomized, bid. For

all i ∈ I ∪ {s}, let b̃−i = (b̃j)j∈(I∪{s})\{i} denote the random vector of bids by bidders other

than i, and let b̃
(1)
−i = maxj∈(I∪{s})\{i} b̃j denote the random variable for the highest among

these bids. For all i, j ∈ I ∪ {s}, let b̃−i−j = (b̃k)k∈(I∪{s})\{i,j} denote the random vector of

bids by bidders other than i and j, and let b̃
(1)
−i−j = maxk∈(I∪{s})\{i,j} b̃k denote the random

variable for the highest among these bids.

The next assumption extends the bid revelation assumptions from the Note.

Assumption 3 After a first-price auction the winner’s bid becomes public; the losers’ bids

remain private.

After a second-price auction, the losers’ bids become public; the winner’s bid remains

private.

These bid revelation assumptions make the first-price auction setting strategically equiv-

alent to the Dutch auction setting. Concerning the second-price auction, the bid revelation

assumptions are such that after the auction the same information is revealed as after an

1As for further regularity properties of the bid function β, note that we will construct equilibria in the

second-price auction case where β is not continuous. In the first-price auction case, there will be a unique

equilibrium, where β is always continuous, but not necessarily differentiable.
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English auction. In Section 4 we will show that our second-price auction results remain

valid in the English auction setting.2

By Assumption 3, all bidders make the same bid observations. It is thus reasonable to

assume that any two bidders have identical post-auction beliefs about a third bidder even

if an unexpected event occurs so that Bayesian updating is not possible, and to assume

that it is commonly believed that all bidders have these beliefs. Moreover, it is reasonable

to maintain stochastic independence of the post-auction beliefs across bidders because use

values are stochastically independent ex ante. Hence, given any auction outcome, we can

assume that post-auction beliefs are summarized by a vector of distributions Π = (Πj)j∈I ,

where Πj represents the post-auction belief about bidder j’s use value. Note that Π includes

the beliefs about the resale seller’s use value unless the resale seller is the speculator.

The post-auction beliefs that occur in our equilibrium constructions are represented by

distributions of the following kind. For any θ, θ ∈ [0, 1] such that θ ≤ θ, consider a bidder

who infers from the observed bidding behavior in period 1 that bidder i’s (i ∈ I) use value

belongs to the interval [θ, θ]. According to Bayes rule, the resulting posterior distribution

function F̂[θ,θ] for bidder i’s use value is given by

F̂[θ,θ](θi) =


F (θi)−F (θ)

F (θ)−F (θ)
if θi ∈ [θ, θ),

1 if θi ≥ θ,

0 if θi < θ.

Note that F̂[θ,θ] is a point distribution if θ = θ. If θ > θ, the distribution F̂[θ,θ] has (on its

support [θ, θ]) the same regularity properties as F : a positive and continuous density and

an increasing hazard rate. By Assumption 2, the case θ > θ becomes relevant only if an

off-equilibrium bid or bid 0 is observed.

Modelling period 2—the resale market

2In the second-price auction setting, we expect that our equilibria remain valid even if the initial seller

does not announce any information about the bids. This is because in the equilibria that we will construct,

the only dependence of the outcome of the resale market on the auction bids is via the highest loser bid, and

in a second-price auction the auction winner learns the highest loser bid from the price she pays.

4



The period-2 environment where resale takes place is determined by the identity i ∈

I ∪ {s} and use value θi of the resale seller (i.e., the auction winner) and by the post-

auction beliefs Π = (Πj)j∈I . Any tuple (Π, θi, i) is called a resale environment. A resale

mechanism is a game form to be played in period 2 with players I∪{s}, where an outcome is

a probability distribution over who gets the good and a vector of side payments among the

players, together with an equilibrium such that the participation constraints are satisfied;

if multiple equilibria exist, we assume an equilibrium that is best for the resale seller is

played. A resale mechanism is called optimal if there exists no other resale mechanism that

yields a higher expected payoff for the resale seller. For any resale environment (Π, θi, i), let

M̂(Π, θi, i) denote the resale mechanism used.

Assumption 4 For all resale environments (Π, θi, i) where every standard auction with an

optimal reserve price is an optimal resale mechanism, the resale mechanism M̂(Π, θi, i) is a

standard auction with an optimal reserve price.

Observe that, according to this assumption, in any resale environment where not all four

standard auctions are optimal, any resale mechanism may be used. Hence, Assumption 4

covers two important special cases: the resale seller may always use any standard auction

with an optimal reserve price,3 or she may always use an optimal resale mechanism.4 The

first case is attractive because the cost of implementing a standard auction is negligible in

many applications. The second case is attractive because it allows the resale seller to be

3Strictly speaking, an optimal reserve price may not always exist (because post-auction beliefs may be

represented by non-smooth distributions). In such a resale environment, Assumption 4 allows any resale

mechanism to be used. In particular, a standard auction with any reserve price that is arbitrarily close to

being optimal may be used.
4If an optimal resale mechanism does not exist the resale seller may use any resale mechanism that is

arbitrarily close to being optimal. Observe that, due to independent private values in the resale market, an

optimal resale mechanism exists and can by computed using Myerson’s (1981) methods as long as the resale

seller’s use value is commonly known and the beliefs about the other bidders are represented by smooth

distributions.
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fully rational concerning the choice of a resale mechanism if any mechanism can be costlessly

implemented.

The reason that Assumption 4 is sufficient for our results is that in the resale environments

that are relevant for our equilibrium constructions, any standard auction with an optimal

reserve price is an optimal resale mechanism. Other resale environments become relevant if

a bidder deviates from her equilibrium bid in an attempt to win the auction more often and

subsequently offer the good for resale, but we will show that even if the deviating bidder

appropriates the entire surplus in the resale market no such deviation is profitable.

Equilibrium resale environments

The following two classes of resale environments are relevant for our equilibrium con-

structions. (i) The resale environments where the resale seller is certain about the maximum

use value among all bidders. (ii) The resale environments where the resale seller is the spec-

ulator and, according to the post-auction beliefs, the n regular bidders have independent

private values, where each bidder’s value is distributed according to F̂[0,θ̂] for some θ̂ ∈ (0, 1].

In class (i), any standard auction with a reserve price equal to the maximum use value is

an optimal resale mechanism because the resale seller appropriates the entire surplus. The

equilibrium resale allocation is that the resale seller keeps the good if she has the maximum

use value, and otherwise sells it to the bidder with the maximum use value. In class (ii), it is

well-known (cf. Myerson, 1981) that any standard auction with reserve price r̂(θ̂) implicitly

defined by r̂(θ̂) = (F (θ̂) − F (r̂(θ̂)))/f(r̂(θ̂)) is an optimal resale mechanism (observe that

the function r̂ is uniquely determined on (0, 1], and is strictly increasing and continuous).

The equilibrium resale allocation is that the bidder with the highest value obtains the good,

unless her value is below r̂(θ̂), in which case the resale seller keeps the good. In both classes

(i) and (ii) of resale environments, we use the notation S(ř) to denote any standard auction

with any reserve price ř ≥ 0.

Throughout the rest of this section, we consider the resale environments of class (ii).

We derive auxiliary technical results about the resale mechanism S(r̂(θ̂)) for all θ̂ ∈ (0, 1].
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Denote by P̂θ̂(θ) the expected payment of a regular bidder with use value θ ∈ [0, 1] in

the mechanism S(r̂(θ̂)), and by Q̂θ̂(θ) the probability that the bidder obtains the good.5

Properties of the functions P̂ and Q̂ are summarized in the following lemma.

Lemma 1 Consider any θ̂ ∈ (0, 1]. For all θ ∈ [0, r̂(θ̂)), we have P̂θ̂(θ) = 0 and Q̂θ̂(θ) = 0.

For all θ ∈ [r̂(θ̂), θ̂],

P̂θ̂(θ)

Q̂θ̂(θ)
= θ −

∫ θ

r̂(θ̂)

F (θ′)n−1

F (θ)n−1
dθ′, (1)

P̂θ̂(θ)

Q̂θ̂(θ)
is weakly increasing in θ and θ̂, (2)

Q̂θ̂(θ) = F (θ)n−1/F (θ̂)n−1. (3)

For all θ ∈ [θ̂, 1],

Q̂θ̂(θ) = 1, P̂θ̂(θ) = P̂θ̂(θ̂). (4)

Proof. Formulas (1), (3), and (4) are standard. To see (2), use that r̂ is increasing and

the derivative of P̂θ̂(θ)/Q̂θ̂(θ) with respect to θ is non-negative. QED

The resale seller’s expected revenue in the mechanism S(r̂(θ̂)) is denoted M(θ̂); also let

M(0) = 0. Observe that M is strictly increasing. Other properties of M are summarized in

the following lemma.

Lemma 2 For all θ̂ ∈ (0, 1],

M(θ̂) =

∫ θ̂

r̂(θ̂)

(
θ − F (θ̂)− F (θ)

f(θ)

)
d(F (θ)n)

F (θ̂)n
, (5)

M ′(θ̂) = n
f(θ̂)

F (θ̂)

(
θ̂ −M(θ̂)−

∫ θ̂

r̂(θ̂)

F (θ)n−1

F (θ̂)n−1
dθ

)
. (6)

Moreover,

M ′(0) <
n− 1

n
. (7)

The function M is Lipschitz continuous on [0, 1], and its derivative M ′ is continuous.

5Observe that according to the post-auction beliefs the probability equals 0 that a bidder-type in (θ̂, 1]

participates in the resale market. It is nevertheless important to define the functions P̂θ̂(θ) and Q̂θ̂(θ) for

θ > θ̂ because a participation of a type θ > θ̂ may arise from a deviation in period 1.
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Proof. Formula (5) is standard from Myerson (1981), while (6) follows from standard

differentiation rules. By differentiability, F (θ) = f(0)θ + O(θ). Using this and r̂(θ̂)/θ̂ → 1/2

as θ̂ → 0, (5) can be used to show

M ′(0) = lim
θ̂→0

M(θ̂)

θ̂
=

n− 1

n + 1
+

1

2n(n + 1)
, (8)

which implies (7). Using (6) and (8), it can be confirmed that limθ̂→0 M ′(θ̂) = M ′(0).

Therefore, M ′ is continuous on [0, 1]. Hence, M ′ is bounded above on [0, 1], which implies

Lipschitz continuity of M . QED

The final result in this section shows that the payment of the highest type of bidder who

participates in the resale market is higher than the resale seller’s expected revenue.

Lemma 3

∀θ̂ ∈ (0, 1] : P̂θ̂(θ̂) > M(θ̂). (9)

Proof. Using Lemma 1, we find

M(θ̂) = n

∫ θ̂

r̂(θ̂)

P̂θ̂(θ)
dF (θ)

F (θ̂)
= n

∫ θ̂

r̂(θ̂)

P̂θ̂(θ)

Q̂θ̂(θ)
Q̂θ̂(θ)

dF (θ)

F (θ̂)

(3)
=

∫ θ̂

r̂(θ̂)

P̂θ̂(θ)

Q̂θ̂(θ)

dF (θ)n

F (θ̂)n

(2)

≤
∫ θ̂

r̂(θ̂)

P̂θ̂(θ̂)

Q̂θ̂(θ̂)

dF (θ)n

F (θ̂)n

(4)
= P̂θ̂(θ̂)

(
1− F (r̂(θ̂))n

F (θ̂)n

)
< P̂θ̂(θ̂)

because r̂(θ̂) < θ̂. QED

Observe that Lemma 3 would be trivial if n = 1 because nobody would pay more than

the highest participating type. If n > 1, the expected payment of any given bidder type is

collected n times if all resale bidders have this type. The proof instead works with any given

type’s expected payment divided by her winning probability. Because this divided payment

is increasing in type and because with positive probability nobody wins, the highest type’s

divided payment exceeds the seller’s revenue. But the highest type wins for sure, which

completes the proof.
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2 The first-price/Dutch auction with resale

In this section we construct and discuss the essentially unique perfect Bayesian equilibrium

of a first-price auction with resale. Proposition 1 describes the equilibrium. Proposition 2

deals with the question for which parameter constellations the speculator plays an active

role. Proposition 3 evaluates the impact of a resale opportunity on initial seller revenue.

Let β denote bidder i’s (i ∈ I) bid in the first-price auction as a function of her use value.

Let H denote the probability distribution for the speculator’s bid b̃s.

To define post-auction beliefs, consider any bidder j ∈ I. Let i ∈ I ∪{s} denote the label

of the winner, and let bi ≥ 0 denote the winner’s bid. Then, the probability distribution

Πj(· | i, bi) denotes the post-auction belief about j’s use value held by bidders other than j.

Let M(i, bi, θi) denote the resale mechanism used by the resale seller i ∈ I ∪ {s} after a

first-price auction when bi ≥ 0 denotes i’s auction winning bid and i’s use value is θi. For all

i, j ∈ I ∪ {s} with j 6= i, all bi ≥ 0, and all θi, θj, let Pj(i, bi, θi, θj) denote the net expected

transfer from bidder j of type θj to the other bidders (including the transfer to i) in the

mechanism M(i, bi, θi). Let Qj(i, bi, θi, θj) denote the probability that bidder j obtains the

good. Let P (i, bi, θi) denote the expected transfer to the resale seller i, and Q(i, bi, θi) the

probability that the resale seller keeps the good.

For all i ∈ I, bidder i’s expected payoff when she bids bi ≥ 0 and has the use value θi

equals

ui(bi, θi) = E[

(−bi + max{θi, δ (θiQ(i, bi, θi) + P (i, bi, θi))})1w(bi,b̃−i)=i

+
∑
j 6=i

δ
(
θiQi(j, b̃j, θ̃j, θi)− Pi(j, b̃j, θ̃j, θi)

)
1w(bi,b̃−i)=j ],

where w denotes the period-1 winner as a function of the bid profile, and where the max-term

reflects the condition that after winning in period 1 bidder i decides optimally whether to

consume the good or to offer it for resale. The speculator’s payoff when she bids bs ≥ 0 is

given by

us(bs) = E[(−bs + δP (s, bs, θs))1w(bs,b̃−s)=s ].
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The equilibrium conditions are (10) that post-auction beliefs about auction losers are deter-

mined by Bayes rule whenever possible, (11) that the resale mechanism is chosen according

to Assumption 4, and (12, 13) that period-1 behavior is optimal.

Definition 1 A tuple (β, H,M) is a quasi-symmetric regular equilibrium of the first-price

auction with resale if there exists a belief system

(Πj(· | i, bi))j∈I, i∈I∪{s}, bi≥0 such that the following holds:

∀i ∈ I ∪ {s}, bi > 0, j ∈ I \ {i} :

Πj(· | i, bi) = F̂β−1([0,bi]) if [0, bi] ∩ β([0, 1]) 6= ∅, (10)

∀i ∈ I ∪ {s}, bi ≥ 0, θi : M(i, bi, θi) = M̂((Πj(· | i, bi))j∈I , θi, i), (11)

∀i ∈ I, θi : β(θi) ∈ arg max
bi≥0

ui(bi, θi), (12)

Pr[b̃s ∈ arg max
bs≥0

us(bs)] = 1. (13)

This equilibrium concept is in the spirit of perfect Bayesian equilibrium, combined with

the symmetry and regularity restrictions formulated in Assumption 2, and with two presen-

tational simplifications. First, we have omitted a condition on the post-auction beliefs about

the auction winner because it would play no role for our analysis. Second, condition (10)

excludes the case bi = 0; the appropriate Bayesian updating condition for this case would

depend on the auction tieing rule (whereas, by Assumption 2, ties occur with probability 0

if bi > 0), but the case bi = 0 is irrelevant for our analysis because it will turn out that in

equilibrium only positive bids can win the auction with positive probability.

Additional notation is needed in order to state the main result, Proposition 1, which

describes the equilibrium. For all θ ∈ (0, 1] and b ∈ IR, define

K(θ, b) =

 N(θ, b) if b > δM(θ),

max {δM ′(θ), N(θ, b)} if b ≤ δM(θ),
(14)

where

N(θ, b) = (n− 1)
f(θ)

F (θ)
(θ − b). (15)

10



Observe that in a first-price auction with n regular bidders and without resale opportunity,

N(θ, b) is the slope of the equilibrium bid function at θ when b equals type θ’s equilibrium

bid. Hence, N(θ, b) represents the competition among the regular bidders in the absence

of resale. The function K(θ, b) equals N(θ, b) if b > δM(θ); that is, if b and θ are such

that, if resale is possible, a speculator who comes in with a bid of b and wins against the

regular-bidder types up to θ makes a loss. If type θ’s bid b is such that the speculator breaks

even (b = δM(θ)), then K(θ, b) is the larger of N(θ, b) and the slope δM ′(θ) that keeps the

speculator at the break-even point. In summary, K(θ, b) is the smallest slope that respects

the competition among the regular bidders without resale and does not allow the speculator

to make a profit via resale.

For any b > 0, consider a strictly increasing Lipschitz continuous function φ : [0, b] → [0, 1]

such that φ(b) > b ≥ δM(φ(b)) for all b > 0. For all b ∈ (0, b] where the derivative φ′(b)

exists, define

Lφ(b) =


Rφ(b)

Sφ(b)
if b = δM(φ(b)),

0 if b > δM(φ(b)),
(16)

where

Rφ(b) = 1−N(φ(b), b)φ′(b), (17)

Sφ(b) = (1− δ)φ(b)− b + δP̂φ(b)(φ(b)).

Observe that Lφ is well-defined because b = δM(φ(b)) implies Sφ(b) > 0 by (9). Also observe

that Lφ(b) = 0 if b is such that the speculator would make a loss if she did bid b and did win

against the types in [0, φ(b)].

Proposition 1 describes the unique equilibrium.6 Condition (18) establishes a differential

equation for the regular bidders’ bid function β. The differential equation, which holds almost

everywhere according to the Lebesgue measure, reflects the bidding competition among the

6The uniqueness property differs from the “essential uniqueness” in the Note where multiple optimal resale

prices cannot be excluded because value distributions F with a non-increasing hazard rate are allowed; cf.

footnote 1 in the Note and p. 7 in the Note.
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regular bidders and a no-profit condition for the speculator (recall the properties of the

function K explained above). The speculator randomizes her bid according to (19), in which

the distribution H is constructed such that it is optimal for the regular bidders to use the

bid function defined by (18). Using (16) one sees that the support of H is confined to the

points θ where β(θ) = δM(θ) so that the speculator does not make a loss.7 The post-auction

beliefs (20) of the winning bidder are that the highest type among the losing regular bidders

is the type that would have resulted in a tie. Hence, if one of the regular bidders wins the

auction after making her equilibrium bid, she believes that she has the highest use value in

the market and thus consumes the good. Condition (21) states that if the auction winner is

the speculator, then her resale mechanism is a standard auction with a reserve price that is

optimal given her post-auction beliefs.

Proposition 1 For any regular-bidder number n ≥ 2, discount factor δ ∈ (0, 1), and dis-

tribution F satisfying Assumption 1, the first-price auction with resale has a unique quasi-

symmetric regular equilibrium (β, H,M). The equilibrium satisfies conditions (18) (19), and

(21). It is supported by beliefs satisfying (20).

β is Lipschitz, β(0) = 0, β′(θ) = K(θ, β(θ)) a.e. θ ∈ (0, 1). (18)

∀b ∈ (0, β(1)] : H(b) = e−
∫ β(1)

b Lφ(b) db, (19)

where φ denotes the inverse of β.

∀i, bi ≥ 0, j 6∈ {s, i}, θj : Πj(θj | i, bi) = min{ F (θj)

F (φ(bi))
, 1}, (20)

where we define φ(bi) = 1 for all bi > β(1).

∀bs > 0 : M(s, bs, 0) = S(r̂(φ(bs))). (21)

7The feature that the regular bidders use a strictly increasing bid function while an additional bidder with

no private information randomizes over a subset of the regular bidders’ bid range also appears in Martinez

(2002). She constructs an equilibrium for first-price auctions without resale in an environment with three

or more regular bidders and one additional bidder with a commonly known valuation. The differences

between Martinez’ equilibrium and ours are parallel to the differences between Vickrey’s (1961, Appendix

III) equilibrium and our equilibrium in the 2-bidder case; cf. footnote 6 in the Note.

12



Proof. We first show uniqueness (Lemma 4 to Lemma 11), then existence (Lemma 12

to Lemma 15).

Lemma 4 shows that no regular bidder will bid above her value. Lemma 5 establishes a

convenient representation for the speculator’s payoff function. Lemma 6 shows that, with

positive probability, the speculator makes arbitrarily small bids. Lemma 7 shows that the

speculator’s equilibrium payoff equals 0. Lemma 8 shows that the speculator’s bid distri-

bution has no atoms. Lemma 9 states that the regular bidders’ equilibrium bid function

is continuous. Lemma 10 states that every regular bidder with a positive use value will

bid lower than her use value. Lemma 11 shows that the regular bidders’ equilibrium bid

function satisfies (18) and is uniquely characterized by (18), and the speculator’s bid distri-

bution is given by (19). Conditions (20) are (21) are then straightforward. This completes

the equilibrium uniqueness proof.

In Lemma 12 and Lemma 14, we apply techniques from the theory of differential inclu-

sions8 to show that the differential equation (18) has a solution. In doing this, we also recall

in Lemma 13 the differential equation satisfied by the standard no-resale first-price auction

equilibrium bid function. Lemma 15 completes the equilibrium existence proof.

For any bid function β satisfying Assumption 2 and all b ∈ [0, β(1)], let

φ(b) = sup{θi ∈ [0, 1] | β(θi) < b}, (22)

where sup ∅ = 0.

Lemma 4 Let (β, H,M) be a quasi-symmetric regular equilibrium of the first-price auction

with resale, and let φ be defined by (22). Then β(θi) ≤ θi for all θi ∈ [0, 1], and φ(b) ≥ b for

all b ∈ [0, β(1)].

Proof. By Assumption 2, β(0) = 0. Now suppose that β(θi) > θi for some θi > 0.

In particular, β(θi) > 0 and thus β(θi) wins with positive probability by Assumption 2.

8We thank Jörg Oechssler for help with this part of the proof.
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Therefore, H(β(θi)) > 0 and F (φ(β(θi)))
n−1 > 0. A deviation to the bid bi = θi is profitable

because

ui(θi, θi)− ui(β(θi), θi)

= H(β(θi))F (φ(β(θi)))
n−1(β(θi)− θi)

+δE

(θiQ̂φ(b̃s)
(θi)− P̂φ(b̃s)

(θi)
)

︸ ︷︷ ︸
≥0

1
b̃s>b̃

(1)
−s−i, θi<b̃s≤β(θi)


> 0.

To prove the second part of the lemma, fix b > 0 and consider any θi < b. Then β(θi) ≤

θi < b. Because θi is arbitrary, φ(b) ≥ b. QED

Lemma 5 Let (β, H,M) be a quasi-symmetric regular equilibrium of the first-price auction

with resale, and let φ be defined by (22). Then,

∀b > 0, H(b) > 0 : us(b) = F (φ(b))n (δM(φ(b))− b) .

Proof. Consider any b > 0 such that H(b) > 0 and any θ′ < φ(b). It follows β(θ′) < b

(otherwise β(θ) ≥ b for all θ > θ′ by Assumption 2, implying φ(b) ≤ θ′). Hence, the set

{θ ∈ [0, 1] | β(θ) < b} equals [0, φ(b)) or [0, φ(b)]. QED

The following lemma shows that bidder 2 makes, with positive probability, arbitrarily

small bids. The proof is similar to that of Lemma 1 in the Note. One supposes that the

speculator’s infimum equilibrium bid b > 0. Then low regular-bidder types never win the

auction. For some of these types it is profitable to deviate to a bid slightly above b because,

combining (9) with a continuity argument, the deviating bid is smaller than the speculator’s

resale price.

Lemma 6 Let (β, H,M) be a quasi-symmetric regular equilibrium of the first-price auction

with resale. Then H(b) > 0 for all b > 0.
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Proof. Let b = inf{b | H(b) > 0}. Suppose that b > 0. Let Us ≥ 0 denote the

speculator’s equilibrium payoff. First consider the case H(b) = 0 (i.e., no atom at b). Then

there exists a sequence (bm)
m∈IN such that bm → b as m →∞, us(b

m) = Us, and bm > b for

all m. By Lemma 5,

∀m : Us = F (φ(bm))n (δM(φ(bm))− bm) . (23)

By Lemma 4, φ(bm) > 0, hence (23) implies δM(φ(bm))− bm ≥ 0. Defining θ = limm φ(bm),

it follows δM(θ) ≥ b. This together with (9) implies

∃ξ > 0 : P̂θ(θ) ≥ M(θ) + ξ ≥ b

δ
+ ξ. (24)

Continuity of P̂ by Lemma 1 together with (24) implies that there exists b′ > b and θ′ < θ

such that

∀b ∈ (b, b′) : P̂φ(b)(θ
′) ≥ b

δ
+

ξ

2
. (25)

Now consider any bidder i ∈ I with type θi = θ′. By construction, her equilibrium bid

bi = β(θ′) never wins. Moreover, if some bidder j ∈ I \ {i} wins then bj = β(θj) > b ≥ bi,

implying θj > θ′; i.e., bidder j will not resell to bidder i. Therefore, Qi(j, bj, θj, θ
′) = 0 and

Pi(j, bj, θj, θ
′) = 0. Therefore,

ui(β(θ′), θ′) = δE
[(

θ′Q̂φ(b̃s)
(θ′)− P̂φ(b̃s)

(θ′)
)

1
b̃s>b̃

(1)
−s−i

]
.

On the other hand, for all bi > b,

ui(bi, θ
′) ≥ δE

[(
θ′Q̂φ(b̃s)

(θ′)− P̂φ(b̃s)
(θ′)
)

1
b̃s>b̃

(1)
−s−i, b̃s>bi

]
+(θ′ − bi) Pr[b̃s > b̃

(1)
−s−i, b̃s ≤ bi].

Therefore, for all bi ∈ (b, b′),

ui(bi, θ
′)− ui(β(θ′), θ′) ≥ −δE

[(
θ′Q̂φ(b̃s)

(θ′)− P̂φ(b̃s)
(θ′)
)

1
b̃s>b̃

(1)
−s−i, b̃s≤bi

]
+(θ′ − bi) Pr[b̃s > b̃

(1)
−s−i, b̃s ≤ bi]

≥ E
[(

δP̂φ(b̃s)
(θ′)− bi

)
1

b̃s>b̃
(1)
−s−i, b̃s≤bi

]
(25)

≥ E

[(
b +

δξ

2
− bi

)
1

b̃s>b̃
(1)
−s−i, b̃s≤bi

]
=

(
b +

δξ

2
− bi

)
Pr[b̃s > b̃

(1)
−s−i, b̃s ≤ bi]︸ ︷︷ ︸

≥Pr[θ̃
(1)
−i <θ, b̃s≤bi]>0

.
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Hence, ui(bi, θ
′) > ui(β(θ′), θ′) for all bi > b that are sufficiently close to b. This contradicts

(12).

In the case H(b) > 0 the proof is similar. One defines θ = φ(b) and shows that the

deviation b1 = b is profitable for some type θ′ < θ. QED

Lemma 7 In any quasi-symmetric regular equilibrium of the first-price auction with resale,

the speculator’s payoff equals 0.

Proof. Let Us ≥ 0 denote the speculator’s equilibrium payoff. Suppose that Us > 0.

This implies H(0) = 0. Hence, by Lemma 6 there exists a sequence (bm)
m∈IN such that

bm → 0 as m →∞, us(b
m) = Us, and bm > 0 for all m. By Lemma 5,

∀m : Us = F (φ(bm))n (δM(φ(bm))− bm) ≤ M(φ(bm)).

Hence, M(θ) ≥ Us > 0, where θ ≡ limm φ(bm). Note that

∀θ < θ : β(θ) = 0. (26)

By (9), P̂θ(θ) > Us. As in the proof of Lemma 6, continuity of P̂ by Lemma 1 now shows

the existence of b′ > 0 and θ′ < θ such that

∀b ∈ (0, b′) : P̂φ(b)(θ
′) ≥ Us

2
.

Consider a bidder i ∈ I with type θi = θ′. By (26), her equilibrium bid β(θ′) = 0 never wins.

In the same manner as in the proof of Lemma 6, one obtains a contradiction by showing

that a deviation to a small positive bid bi > 0 is profitable. QED

Lemma 8 Let (β, H,M) be a quasi-symmetric regular equilibrium of the first-price auction

with resale. Then H is continuous on (0,∞).

Proof. Suppose that there exists b′ > 0 where H is not continuous; i.e., Pr[b̃s = b′] > 0.
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Define θm = φ(b′)−1/m for all m large enough such that θm > 0. Let b = limm→∞ β(θm).

We have b = b′ because otherwise Pr[β(θ̃i) ∈ (b, b′)] = 0 which would imply us((b
′ + b)/2) >

us(b
′).

By (9) there exists ξ > 0 such that P̂φ(b′)(φ(b′)) ≥ M(φ(b′)) + ξ ≥ b′/δ + ξ because

otherwise us(b
′) < 0. By Lemma 1, the function P̂φ(b′) is continuous at φ(b′) and thus

P̂φ(b′)(θ
m) > b′/δ + ξ/2,

for all large m. Therefore, for large m,

ui(b
′, θm)− ui(β(θm), θm)

≥ H(β(θm))F (φ(β(θm)))n−1(β(θm)− b′) + Pr[b̃s ∈ (β(θm), b′)](−1)

+ Pr[b̃s = b′]F (φ(b′))n−1((1− δ)θm + (δP̂φ(b′)(θ
m)− b′)).

Therefore,

lim inf
m→∞

u1(b
′, θm)− u1(b1(θ

m), θm)

≥ Pr[b̃s = b′]F (φ(b′))n−1(δP̂φ(b′)(θ
m)− b′)) > 0.

I.e., for large m type θm has a profitable deviation. QED

Lemma 9 Let (β, H,M) be a quasi-symmetric regular equilibrium of the first-price auction

with resale, and let φ be defined by (22). Then β is continuous. Moreover, φ(β(θi)) = θi for

all θi ∈ [0, 1]. The function φ is continuous and strictly increasing.

Proof. Standard.

Lemma 10 Let (β, H,M) be a quasi-symmetric regular equilibrium of the first-price auction

with resale, and let φ be defined by (22). Then β(θi) < θi for all θi ∈ (0, 1]. Moreover,

φ(b) > b for all b ∈ (0, β(1)].
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Proof. Suppose that β(θi) ≥ θi > 0. Then β(θi) > 0, implying H(β(θi)) > 0 by Lemma 6.

Now Lemma 4 shows that β(θi) = θi. Finally, a computation similar to that in the proof of

Lemma 4 shows that a deviation to the bid bi = θi/2 is profitable—a contradiction.

The claim about φ now follows from Lemma 9. QED

The following lemma establishes the differential equation that characterizes the bid func-

tion β, and simultaneously determines the bid distribution H. The proof relies on local

optimality of every regular-bidder type’s bid, and on the result from Lemma 7 that the spec-

ulator’s payoff equals 0. Throughout the proof, we distinguish two kinds of bids b ∈ (0, β(1)]:

we write Ξ(b) = 0 if b has a neighborhood where the speculator bids with probability 0, and

write Ξ(b) = 1 otherwise.

We begin by using upward optimality of the bid function β to derive an inequality (29) in

terms of H and the inverse bid function φ. Inequality (29) captures that the payoff increase

effect from buying more often in the auction and less often from the speculator, weighted

with the probability mass H(bi)−H(b′i), is offset by the payoff decrease effect from bidding

higher and winning more often against one of the other regular bidders.

We continue by showing that H is locally Lipschitz continuous on (0, β(1)]. Local Lips-

chitz continuity around any b with Ξ(b) = 0 is easy because H is locally constant there. If

Ξ(b) = 1, then we use (9) and the result that the speculator obtains 0 payoff (31) to obtain

a positive lower bound (32) for the payoff increase effect in (29). Because the payoff increase

effect is weighted with the probability mass H(bi)−H(b′i), we can conclude that H is locally

Lipschitz around b.

The payoff decrease effect in (29) is confirmed in (33) and is then used to show in (34)

that the slope of the inverse bid function φ is bounded above by the slope that would be

relevant in the absence of a resale opportunity.

Next we use downward optimality of the bid function β to derive an inequality (35)

parallel to (29). Inequality (35) includes a payoff increase effect from bidding lower and

winning less often against one of the other regular bidders, as confirmed in (36).

Combining the payoff decrease effect (33) with the payoff increase effect (36), we obtain
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the slope of the inverse bid function φ in the neighborhood of points where the speculator

does not bid (37). Combining this with the 0-payoff condition for the speculator and with

the upper bound (34) we obtain a differential equation (40) for φ. Inverting this equation

yields the differential equation (18) for β. Using that K is strictly decreasing in its second

argument, we show that the solution to (18) is unique.

Finally, we combine the inequalities (29) and (35) derived from upward and downward

optimality of β with the fact that H is locally Lipschitz to obtain a differential equation for

H, see (42). This equation has the unique solution (19).

Lemma 11 Let (β, H,M) be a quasi-symmetric regular equilibrium of the first-price auction

with resale and φ be defined by (22). Then β satisfies (18) and is uniquely determined by

these conditions. The distribution H is given by (19).

Proof. For all i ∈ I, bi ∈ (0, β(1)], and θi ∈ [0, 1],

ui(bi, θi) = H(bi)F (φ(bi))
n−1(θi − bi) (27)

+δ

∫ ∞

bi

F (φ(bs))
n−1(θiQ̂φ(bs)(θi)− P̂φ(bs)(θi))dH(bs).

Consider bi, b
′
i ∈ (0, β(1)] with b′i < bi, and θ′i = φ(b′i). Note that

δ

∫ bi

b′i

F (φ(bs))
n−1 Q̂φ(bs)(θ

′
i)︸ ︷︷ ︸

decreasing in bs

(
θ′i −

P̂φ(bs)(θ
′
i)

Q̂φ(bs)(θ
′
i)

)
︸ ︷︷ ︸

decreasing in bs by (1)

dH(bs)

≤ δF (φ(bi))
n−1
(
φ(b′i)− P̂φ(b′i)

(φ(b′i))
)

(H(bi)−H(b′i)), (28)

because Q̂φ(b′i)
(φ(b′i)) = 1. Hence,

0
(12)

≥ ui(bi, θ
′
i)− ui(b

′
i, θ

′
i)

(27)
=

(
H(bi)F (φ(bi))

n−1 −H(b′i)F (φ(b′i))
n−1
)
θ′i

−
(
H(bi)F (φ(bi))

n−1bi −H(b′i)F (φ(b′i))
n−1b′i

)
−δ

∫ bi

b′i

F (φ(bs))
n−1(Q̂φ(bs)(θ

′
i)θ

′
i − P̂φ(bs)(θ

′
i))dH(bs)

(28)

≥ −H(b′i)k1(bi, b
′
i)(bi − b′i) + k2(bi, b

′
i)(H(bi)−H(b′i)), (29)
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where

k1(bi, b
′
i) = F (φ(bi))

n−1 − F (φ(bi))
n−1 − F (φ(b′i))

n−1

bi − b′i
(φ(b′i)− b′i),

k2(bi, b
′
i) = F (φ(bi))

n−1
(
φ(b′i)(1− δ) + δP̂φ(b′i)

(φ(b′i))− bi

)
.

Consider any b ∈ (0, β(1)]. We write Ξ(b) = 0 if

∃ν > 0 : Pr[b̃s ∈ (b− ν, b + ν)] = 0,

and Ξ(b) = 1 otherwise. By Lemma 7,

if Ξ(b) = 1 then ∃(cm), cm → b, cm 6= b : δM(φ(cm)) = cm. (30)

Therefore, by continuity of M and φ,

if Ξ(b) = 1 then M(φ(b)) = b. (31)

Suppose that Ξ(b) = 0. Then, there exists ν > 0 such that in the neighborhood N(b) =

(b−ν, b+ν)∩ (0, β(1)] of b the function H is constant. In particular, H is Lipschitz in N(b).

Now suppose that Ξ(b) = 1. Using (9) and (31), there exists ξ > 0 such that for all bi, b
′
i in

some neighborhood of b, if b′i < bi,

k2(bi, b
′
i) ≥ F (φ(bi))

n−1 (φ(b′i)(1− δ) + δM(φ(b′i)) + δξ − bi)

≥ F (φ(bi))
n−1 δξ

2
.

Therefore,

∀b, Ξ(b) = 1 ∃k(b) > 0 and a neighborhood N (b) 3 b :

∀bi, b
′
i ∈ N (b), b′i < bi : k2(bi, b

′
i) ≥ k(b). (32)

Together with (29) and k1(bi, b
′
i) ≤ 1, (32) implies that H is Lipschitz in N (b). We therefore

conclude that in either case, Ξ(b) = 0 or Ξ(b) = 1, the function H is Lipschitz in a neighbor-

hood of b, proving that H is locally Lipschitz in (0, β(1)]. In particular, H is differentiable

almost everywhere on (0, β(1)].
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Next we show that

∀bi ∈ (0, β(1)], b′i ∈ (0, β(1)], b′i < bi : k1(bi, b
′
i) ≥ 0. (33)

Consider any b ∈ (0, β(1)]. If Ξ(b) = 0 then k1(bi, b
′
i) ≥ 0 holds for all bi, b

′
i in a neighborhood

of b because H(bi) = H(b′i). If Ξ(b) = 1, then (32) together with (29) implies that k1(bi, b
′
i) ≥

0 holds for all bi, b′i in a neighborhood of b. This completes the proof of (33).

Using the definition of k1, (33) implies

∀bi ∈ (0, β(1)), φ differentiable at bi : φ′(bi) ≤
1

N(φ(bi), bi)
. (34)

Note that for all bi, b
′
i ∈ (0, β(1)] with b′i < bi, and θi = φ(bi),

0 ≤ ui(bi, θi)− ui(b
′
i, θi)

=
(
H(bi)F (φ(bi))

n−1 −H(b′i)F (φ(b′i))
n−1
)
θi

−
(
H(bi)F (φ(bi))

n−1bi −H(b′i)F (φ(b′i))
n−1b′i

)
−δ

∫ bi

b′i

F (φ(bs))
n−1(Q̂φ(bs)(θi)︸ ︷︷ ︸

=1 by (4)

θi − P̂φ(bs)(θi)︸ ︷︷ ︸
=P̂θi

(θi) by (4)

)dH(bs)

≤ −H(bi)l1(bi, b
′
i)(bi − b′i) + l2(bi, b

′
i)(H(bi)−H(b′i)), (35)

where

l1(bi, b
′
i) = F (φ(bi))

n−1 − F (φ(bi))
n−1 − F (φ(b′i))

n−1

bi − b′i
(φ(bi)− b′i),

l2(bi, b
′
i) = F (φ(b′i))

n−1
(
φ(bi)(1− δ) + δP̂φ(bi)(φ(bi))− b′i

)
.

Consider any b ∈ (0, β(1)] such that Ξ(b) = 0. Then, (35) implies the existence of a

neighborhood N (b) of b such that

∀bi ∈ N (b), b′i ∈ N (b), b′i < bi : l1(bi, b
′
i) ≤ 0. (36)

Taken together, (33) and (36) imply for all bi ∈ N (b) that F (φ)n−1 is differentiable at bi and

lim
b′i→bi

F (φ(bi))
n−1 − F (φ(b′i))

n−1

bi − b′i
=

F (φ(bi))
n−1

φ(bi)− bi

.

21



Hence, φ is differentiable at bi ∈ (b), and,

∀b, Ξ(b) = 0, bi ∈ N (b) : φ′(bi) =
1

N(φ(bi), bi)
. (37)

Note also,

∀b, δM(φ(b)) = b, φ differentiable at b :

δM ′(φ(b))φ′(b) = lim
bi↘b

δM(φ(bi))− δM(φ(b))

bi − b
≤ 1, (38)

because δM(φ(bi)) ≤ bi for all bi, by Lemma 7.

By (30),

∀b, Ξ(b) = 1, φ differentiable at b : δM ′(φ(b))φ′(b) = 1. (39)

In summary, for all b ∈ (0, β(1)] such that φ is differentiable at b,

φ′(b) =

 1
N(φ(b),b)

if δM(φ(b)) < b,

min{ 1
N(φ(b),b)

, 1
δM ′(φ(b))

} if δM(φ(b)) = b,
(40)

by (31), (34), (37), (38), and (39). Next we show that β is Lipschitz continuous. By (33),

F (φ)n−1 is locally Lipschitz in (0, 1], implying that φ is locally Lipschitz in (0, 1]. Hence,

∀c, d ∈ (0, β(1)] : φ(d)− φ(c) =

∫ d

c

φ′(b)db, (41)

where φ′ is given almost everywhere by (40).

The mapping b 7→ N(φ(b), b) is bounded above on [0, β(1)] because N(φ(b), b) ≤ (n −

1)f(φ(b))φ(b)/F (φ(b)) → n−1 as b → 0. Moreover, M ′ is bounded above on [0, 1] by Lemma

2. Therefore, φ′ is bounded below by a positive number. Hence, β is Lipschitz on [0, 1] by

(41).

Because β is the inverse of φ, (40) implies (18).

As for uniqueness, let β and γ be two Lipschitz continuous functions that satisfy (18).

By definition of K, if β(θ) > γ(θ) then K(θ, β(θ)) < K(θ, γ(θ)), for all θ ∈ (0, 1). Therefore,

β ≤ γ. The same argument shows β ≥ γ.
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Next we show that H satisfies

h(b) ≡ H ′(b) = H(b)Lφ(b) a.e. b ∈ (0, β(1)]. (42)

Consider any b ∈ (0, β(1)]. If Ξ[b] = 0 and b = δM(φ(b)), then h(b) = 0 and, by (37),

Rφ(b) = 0. Hence, h(b) = 0 = H(b)Lφ(b), as was to be shown. If Ξ[b] = 0 and b > δM(φ(b)),

then h(b) = 0 = H(b)Lφ(b) by definition of Lφ. Finally suppose that Ξ[b] = 1. The function

r̂ is continuous. Hence, using Lemma 1, the function b′ 7→ P̂φ(b′)(φ(b′)) is continuous on

(0, 1]. Therefore,

lim
b′↗b

k2(b, b
′) = Sφ(b)F (φ(b)) = lim

b′′↘b
l2(b

′′, b) ∀ b ∈ (0, β(1)]. (43)

Because φ is differentiable almost everywhere,

lim
b′↗b

k1(b, b
′) = Rφ(b)F (φ(b)) = lim

b′′↘b
l1(b

′′, b) a.e. b ∈ (0, β(1)]. (44)

From (29), (35), (43), and (44) we get (42).

It is straightforward that (19) satisfies (42). It remains to be shown that (42) together

with the boundary condition H(β(1)) = 1 (which holds because the speculator does not bid

more than necessary to win for sure) has only one solution. Observe that, for all ε > 0, L is

bounded above on [ε, β(1)] due to (9). Therefore, applying the Picard-Lindelöf Theorem to

the differential equation (42) implies that H is unique on [ε, 1]. As a distribution function,

H is right-continuous at 0 and thus uniquely determined at 0 as well. QED

We now turn to the equilibrium existence proof. Lemma 12 shows the existence of a

solution for a class of discontinuous differential equations. These equations are constructed

by altering a continuous differential equation such that if the solution function hits the

boundary value 0, the solution remains there until the slope becomes positive again.

To prove the existence of a solution, the differential equation is transformed into an

upper hemi-continuous differential inclusion that allows a set of slopes (including 0) for the

solution function if it reaches the value 0, and allows only the slope 0 if a negative value is

reached. For the differential inclusion a solution exists by a theorem of Aubin and Cellina
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(1984). One then shows that the solution in fact does not take negative values and solves

the original differential equation almost everywhere.

Lemma 12 Let θ, θ ∈ IR and consider a bounded and continuous function N̂ : [θ, θ]×IR → IR.

Define

K̂(θ, b) =

 N̂(θ, b) if b > 0,

max
{

0, N̂(θ, b)
}

if b ≤ 0.
(45)

Then the initial value problem

β̂(θ) = 0, β̂′(θ) = K̂(θ, β̂(θ)) a.e. θ ∈ [θ, θ], (46)

has a Lipschitz continuous solution β̂.

For all θ such that β̂(θ) > 0, the function β̂ is differentiable at θ.

Proof. Following Aubin-Cellina (1984, p. 101), define

K(θ, b) =
⋂
ε>0

co K̂(Bε(θ, b)),

where Bε(θ, b) denotes the ε-ball around (θ, b) according to any norm in IR2, and co denotes

the closed-convex-hull operator. Then, K is an upper hemi-continuous (or, in Aubin-Cellina’s

(1984) terminology, upper semi-continuous) correspondence, and its values are closed and

convex. Moreover, K is globally bounded. Therefore, the differential inclusion problem

β̂′(θ) ∈ K(θ, β̂(θ)) a.e. θ ∈ (θ, θ), β̂(θ) = 0, (47)

has an absolutely continuous solution β̂ (see Aubin-Cellina, 1984, Theorem 4, p. 101). Note

that, by (47), for a.e. θ ∈ [θ, θ]: if β̂(θ) < 0 then β̂′(θ) ≥ 0. Hence,

∀θ ∈ [θ, θ] : β̂(θ) ≥ 0. (48)

We will now show that β̂ satisfies (46). First, consider θ ∈ [θ, θ] with β̂(θ) > 0, or β̂(θ) = 0

and N̂(θ, 0) ≥ 0. Then, K(θ, β̂(θ) = K̂(θ, β̂(θ)).

Second, consider θ ∈ [θ, θ] with β̂(θ) = 0 and N̂(θ, 0) < 0. For a.e. such θ, (47) implies

β̂′(θ) ≤ 0. On the other hand, β̂′(θ) ≥ 0 by (48). Therefore, β̂′(θ) = 0 = K̂(θ, β̂(θ)),

completing the proof of (46).
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Because β̂ is absolutely continuous,

∀θ ∈ [θ, θ] : β̂(θ) =

∫ θ

θ

K̂(θ′, β̂(θ′))dθ′. (49)

This together with the fact that K̂ is bounded, implies that β̂ is Lipschitz continuous. If

β̂(θ) > 0 for some θ, then K̂(θ′, β̂(θ′)) = N̂(θ′, β̂(θ′)) for all θ′ that are sufficiently close to

θ. Continuity of N̂ together with (49) then implies that β̂ is differentiable at θ. QED

Let βI denote the standard equilibrium bid function of the first-price auction with n

regular bidders and no resale opportunity. The following result is well known.

Lemma 13 Let N be defined as in (15). Then

βI(0) = 0, ∀θ ∈ [0, 1] : βI′(θ) = N(θ, βI(θ)).

The next lemma constructs the equilibrium bid function β for the regular bidders. One

first shows that bidder types close to 0 make the same bid as in the absence of a resale

opportunity. To extend the bid function to the higher types, Lemma 12 is applied to a

differential equation for the excess of the regular bidders’ bid function β over the fictitious

bid function δM that corresponds to a 0 payoff for the speculator.

Lemma 14 The initial value problem (18) has a solution β on [0, 1] with the following prop-

erties:

β is Lipschitz continuous on [0, 1], (50)

∀θ ∈ (0, 1] : β(θ) < θ, (51)

β is strictly increasing on [0, 1], (52)

∀θ ∈ [0, 1] : β(θ) ≥ δM(θ), (53)

φ ≡ β−1 is Lipschitz continuous on [0, β(1)]. (54)
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Proof. Define θ to be the smallest θ ∈ [0, 1] with βI(θ) = δM(θ) (let θ = 1 if no such θ

exists). Because βI′(0) = (n− 1)/n > δM ′(0) by (7), we have θ > 0. Defining β(θ) = βI(θ)

for θ ∈ [0, θ], it follows from Lemma 13 that (18) is satisfied for θ ∈ [0, θ], and it follows

from the theory of first-price auctions without resale that β has the desired properties (50)

to (54) on [0, θ].

Define N̂ : [θ, 1]× IR → IR by

N̂(θ, b) =


N(θ, b + δM(θ))− δM ′(θ), if b ∈ [0, θ − δM(θ)],

N(θ, θ)− δM ′(θ), if b > θ − δM(θ),

N(θ, δM(θ))− δM ′(θ), if b < 0,

and define K̂ as in (45) with θ = 1. Then, Lemma 12 implies that there exists a Lipschitz

continuous β̂ such that (46) holds. By definition of K̂,

∀θ ∈ [θ, 1] : 0 ≤ β̂(θ) ≤ θ − δM(θ).

Therefore, β(θ) ≡ β̂(θ) + δM(θ), θ ∈ [θ, 1], yields a Lipschitz continuous solution for (18).

To prove (51), suppose that β(θ) ≥ θ for some θ > θ. Let θ′ be minimal with that

property. Then, β(θ′) = θ′ > δM(θ′). Thus, β is differentiable at θ′ by Lemma 12. Also,

N̂(θ, β̂(θ)) = −δM ′(θ). Hence, β′(θ′) = 0. Thus, β(θ) > θ for some θ < θ′, a contradiction.

To prove (52), observe that

β′(θ)
(18)
= K(θ, β(θ))

(14)

≥ N(θ, β(θ))
(51)
> 0 a.e. θ ≥ θ.

This also implies that β′ is bounded below by a positive number on [θ, 1]. Hence, φ is

Lipschitz on [β(θ), β(1)]; i.e., (54) follows. Inequality (53) is immediate from (14) and (18).

QED

The final lemma towards the proof of Proposition 1 shows equilibrium existence. We

begin by showing that (19) yields a well-defined distribution function. Next, although by

construction of the differential equation (18) the bid function β satisfies the first-order con-

dition for optimal bidding for every regular-bidder type, it remains to be shown is that
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β is globally optimal. To get this, we show quasi-concavity of the regular bidders’ payoff

function. When considering upward deviations, we must take care of the possibility that

a regular bidder deviates to a higher bid in an attempt to offer the good for resale. No

such complication arises in the context of downward deviations because such a deviation

does not lead to additional resale offers from competing regular bidders. Optimality of the

speculator’s bid distribution follows by construction.

Lemma 15 The first-price auction with resale has a quasi-symmetric regular equilibrium

(β, H,M).

Proof. Define β according to Lemma 14, and define φ = β−1. The first step is to show

that H as defined by (19) is a well-defined distribution function. For any given ε > 0, (9)

implies that there exists ξ > 0 such that

∀b ∈ [ε, β(1)] : if b = δM(φ(b)) then δP̂φ(b)(φ(b)) ≥ b + δξ. (55)

By definition of K,

β′(φ(b)) ≥ N(φ(b), β(φ(b))) a.e. b ∈ (0, β(1)],

implying

Rφ(b)
(17)

≥ 0 a.e. b ∈ (0, β(1)]. (56)

From (55) and (56) it follows that Lφ (cf. (16)) is well-defined almost everywhere, and is

bounded above on [ε, β(1)] for any given ε > 0. Hence, H is Lipschitz continuous on [ε, β(1)]

for every ε > 0. Moreover, because Lφ is non-negative H is weakly increasing on (0, β(1)]

and the limit H(0) = limb↘0 H(b) exists. Therefore, H is a distribution function.

Let post-auction beliefs and resale mechanisms be defined by (10) and (11). It remains

to be shown that (12) and (13) hold.

To show (12), first consider any deviating bid bi ∈ (0, β(θi)) of a bidder i 6= s with type

θi ∈ (0, 1]. After winning at bi, it is optimal for bidder i to consume the good because she

believes that the highest use value among bidders other than herself is at most φ(bi) < θi.
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Also, if some bidder j ∈ I \{i} wins after making her equilibrium bid then bidder j consumes

the good in period 1. Hence, bidder i’s payoff is given by

ui(bi, θi) = H(bi)F (φ(bi))
n−1(θi − bi) + δ

∫ ∞

bi

F (φ(bs))
n−1Ûφ(bs)(θi)dH(bs),

where

Ûφ(bs)(θi) ≡ θiQ̂φ(bs)(θi)− P̂φ(bs)(θi).

Because φ and H are locally Lipschitz continuous on (0, β(1)], the mapping bi 7→ ui(bi, θi) has

the same property and is differentiable Lebesgue-a.e. in (0, 1). Hence, for a.e. bi ∈ (0, β(θi)),

∂ui

∂bi

(bi, θi) = H(bi)F (φ(bi))
n−2 ((n− 1)f(φ(bi))φ

′(bi)(θi − bi)− F (φ(bi)))

+H ′(bi)F (φ(bi))
n−1
(
θi − bi − δÛφ(bi)(θi)

)
θi≥φ(bi)

≥ H(bi)F (φ(bi))
n−1

(
(n− 1)

f(φ(bi))

F (φ(bi))
(φ(bi)− bi)φ

′(bi)− 1

)
+H ′(bi)F (φ(bi))

n−1
(
θi − bi − δÛφ(bi)(θi)

)
.

By definition of Rφ and because H ′(bi) = Lφ(bi)H(bi) by (19),

∂ui

∂bi
(bi, θi)

H(bi)F (φ(bi))n−1
≥ −Rφ(bi) + Lφ(bi)

(
θi − bi − δÛφ(bi)(θi)

)
. (57)

To show that
∂ui

∂bi

(bi, θi) ≥ 0 a.e. bi ∈ (0, β(θi)), (58)

we distinguish two cases. If bi > δM(φ(bi)), then β(φ(bi)) > δM(φ(bi)), hence β′(φ(bi)) =

N(φ(bi), bi) by (18). Thus, Rφ(bi) = 0. Moreover, Lφ(bi) = 0 by definition of Lφ. Hence,

(58) follows from (57).

If bi = δM(φ(bi)) then Rφ(bi) = Lφ(bi)Sφ(bi) by definition of Lφ. Using this and the

definition of Sφ(bi), (57) implies

∂ui

∂bi
(bi, θi)

H(bi)F (φ(bi))n−1
≥ Lφ(bi)

(
θi − δÛφ(bi)(θi)− (1− δ)φ(bi)− δP̂φ(bi)(φ(bi))

)
.

Now (58) follows from Ûφ(bi)(θi) = θi − P̂φ(bi)(φ(bi)) by (4).

From (58) it follows that type θi cannot gain from deviating to any bid bi ∈ [0, β(θi)).

28



Now consider a deviating bid bi ∈ (β(θi), β(1)]. Suppose first that bidder i offers the

good for resale upon winning. We obtain an upper bound vi(bi, θi) for bidder i’s payoff by

assuming she gets the entire surplus that is available in the resale market,

vi(bi, θi) = H(bi)

(
F (φ(bi))

n−1(δθi − bi) + δ

∫ φ(bi)

θi

(θ′ − θi)dF (θ′)n−1

)

+δ

∫ ∞

bi

F (φ(bs))
n−1Uφ(bs)(θi)dH(bs).

For a.e. bi ∈ (β(θi), β(1)),

∂vi

∂bi

(bi, θi)

θi≤φ(bi)

≤ H(bi)F (φ(bi))
n−1

(
(n− 1)

f(φ(bi))

F (φ(bi))
(δφ(bi)− bi)φ

′(bi)− 1

)
+H ′(bi)F (φ(bi))

n−1

(
δθi − bi − δÛφ(bi)(θi) + δ

∫ φ(bi)

θi

θ′ − θi

F (φ(bi))n−1
d(F (θ′)n−1)

)
.

By definition of Rφ and δ ≤ 1, and because H ′(bi) = Lφ(bi)H(bi) by (19),

∂vi

∂bi
(bi, θi)

H(bi)F (φ(bi))n−1
≤ −Rφ(bi) + Lφ(bi)

(
δθi − bi − δÛφ(bi)(θi)

∫ φ(bi)

θi

+ δ

∫ φ(bi)

θi

θ′ − θi

F (φ(bi))n−1
dF (θ′)n−1

)
. (59)

To show that
∂vi

∂bi

(bi, θi) ≤ 0 a.e. bi ∈ (β(θi), β(1)), (60)

we distinguish two cases. If bi > δM(φ(bi)), then Rφ(bi) = 0 by (18) and Lφ(bi) = 0 by

definition of Lφ. Hence, (60) follows from (59).

If bi = δM(φ(bi)) then Rφ(bi) = Lφ(bi)Sφ(bi). Using this and the definition of Sφ(bi),

(59) implies

∂vi

∂bi
(bi, θi)

H(bi)F (φ(bi))n−1
≤ Lφ(bi)

(
δθi − δÛφ(bi)(θi) + δ

∫ φ(bi)

θi

θ′ − θi

F (φ(bi))n−1
d(F (θ′)n−1)

∫ φ(bi)

θi

− (1− δ)φ(bi)− δP̂φ(bi)(φ(bi))

)
. (61)
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Using the envelope theorem in integral form and integration by parts, the expression in

brackets on the right-hand side of (61) can be simplified:

(. . . ) = δθi − φ(bi) + δ
(
Ûφ(bi)(φ(bi))− Ûφ(bi)(θi)

)
+δ

∫ φ(bi)

θi

θ′ − θi

F (φ(bi))n−1
d(F (θ′)n−1)

= δθi − φ(bi) + δ

∫ φ(bi)

θi

F (θ′)n−1

F (φ(bi))n−1
dθ′ + δ

∫ φ(bi)

θi

θ′ − θi

F (φ(bi))n−1
d(F (θ′)n−1)

= δθi − φ(bi) + δ θ′
F (θ′)n−1

F (φ(bi))n−1

∣∣∣∣φ(bi)

θi

− δθi
F (φ(bi))

n−1 − F (θi)
n−1

F (φ(bi))n−1

= −(1− δ)φ(bi) ≤ 0.

Hence, (60) follows from (61).

Finally, consider a deviating bid bi ∈ (β(θi), β(1)] and suppose that bidder i consumes

the good upon winning. Let v̌i(bi, θi) denote the corresponding payoff. Using techniques

analogous to those leading to (58) and (60), one shows that

∂v̌i

∂bi

(bi, θi) ≤ 0 a.e. bi ∈ (β(θi), β(1)). (62)

An upper bound for bidder i’s payoff with any bid bi ∈ (β(θi), β(1)] is

ui(bi, θi) ≡ max{vi(bi, θi), v̌i(bi, θi)}.

Because the maximum of two locally Lipschitz continuous functions is locally Lipschitz itself,

the mapping bi 7→ ui(bi, θi) can be written as the integral over its derivative. Moreover,

ui(β(θi), θi) = ui(β(θi), θi). Therefore, (60) and (62) imply that for all bi ∈ (β(θi), β(1)],

ui(bi, θi)− ui(β(θi), θi) ≤ ui(bi, θi)− ui(β(θi), θi)

=

∫ bi

β(θi)

∂ui

∂bi

(b, θi)db ≤ 0.

Hence, no type θi > 0 has an incentive to deviate. By continuity of ui, type θi = 0 has no

incentive to deviate either. This completes the proof of (12).

To complete the equilibrium existence proof, we have to show (13). From (53) it follows

that bs ≥ δM(φ(bs)), and thus us(bs) ≤ 0, for all bs ∈ (0, β(1)]. It remains to be shown that

Pr[us(b̃s) < 0] = 0.
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Consider the event us(b̃s) < 0. Then, β(φ(b̃s)) > δM(φ(b̃s)) and thus Lφ(b̃s) = 0. Using

(19), the probability of that event is∫
(0,β(1)]

1Lφ(bs)=0h(bs)dbs =

∫
(0,β(1)]

1Lφ(bs)=0Lφ(bs)H(bs)dbs = 0.

QED

This completes the proof of Proposition 1.

Observe that Proposition 1 allows the possibility that H(0) = 1; i.e., the speculator

may not play an active role at all. The following Proposition 2 shows that the answer to

the question whether the speculator plays an active role depends on the distribution F , the

discount factor δ, and the number of regular bidders n. For any given n, Proposition 2

determines the smallest discount factor δn such that the speculator plays an active role for

some F . To this end, we show that the type of distribution described on p. 18 of the Note

is the most favorable for speculative activity so that we can define

δn = min
z∈[0,1]

η(z, n)

ρ(z, n)
. (63)

The intuition is as follows. Because the distribution of the types below the resale reserve

price is irrelevant for the resale revenue, the most favorable distribution for the speculator is

the one with the smallest expectation conditional on the information that the value is below

the reserve price. One cannot shift all the probability weight to 0 because that would violate

the increasing hazard rate assumption; the best one can do is to shift probability weight to

lower values until the hazard rate is constant—this yields the exponential shape. Above the

resale reserve price the best that can happen for the speculator is that all the probability

weight is concentrated just above the reserve price so that the bidders obtain no information

rent. This yields the type of distribution of the above example.

Proposition 2 For every regular-bidder number n ≥ 2, there exists a discount factor δn < 1

such that the following holds in the quasi-symmetric regular equilibrium of a first-price or

Dutch auction with resale:
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(i) for all δ > δn, there exists a distribution F satisfying Assumption 1 such that the

speculator plays an active role;

(ii) for all δ ≤ δn and all F satisfying Assumption 1, the speculator bids 0 and the regular

bidders use the same bid function as in the absence of a resale opportunity.

Moreover, δn → 1 as n →∞.

Proof. Observe that, for all (F, n, δ),

if H(0) = 1 then β = βI. (64)

To see (64), suppose that H(0) = 1. Then (19) implies Lφ(b) = 0 a.e. b ∈ [0, β(1)]. Hence,

β = βI by Lemma 13, (16), (17), and (18).9

The argument given in Section 5 of the Note together with (64) proves part (i). To prove

the “Moreover” part, note that

ρ(z, n) ≤ 1, min
z∈[0,1]

η(z, n) →n→∞ 1.

To prove part (ii), we need additional notation concerning order statistics. For any distribu-

tion function D, let D(k,l) denote the distribution function for the lth-highest order statistic

among k i.i.d. random variables (k = 1, 2 . . . ; l = 1, . . . , k) that are distributed according to

D.

Fix any n ≥ 2, δ ≤ δn, and F with an increasing hazard rate. Suppose that β = βI.

To complete the proof of (ii), it is sufficient to show that us(bs) ≤ 0 for all bs ≥ 0 (because

then H with H(0) = 1 is a best-response bid distribution of the speculator, and β is a

best-response bid function of the regular bidders by (64)).

By definition of βI, if bs = βI(1),

us(bs) = π(F, n, δ) ≡ δM(1)−
∫ 1

0

θdF (n−1,1)(θ). (65)

If bs < βI(1) and θ̂ ≡ (βI)−1(bs),

us(bs) = F (θ̂)n

(
δM(θ̂)−

∫ 1

0

θdF̂
(n−1,1)

[0,θ̂]
(θ)

)
= F (θ̂)nπ(F̂[0,θ̂], n, δ).

9The result that the bid function β = βI yields an equilibrium in the absence of bids by the speculator

already appears in Haile (1999, Theorem 1).

32



Hence, w.l.o.g. it is sufficient to show that

π(F, n, δ) ≤ 0. (66)

Rearranging (5), one finds

M(1) = n(1− F (ř))F (ř)n−1ř +

∫ 1

ř

θdF (n,2)(θ),

where ř ≡ r̂(1). Hence, using (65),

π(F, n, δ) (67)

= δ

(
n(1− F (ř))F (ř)n−1ř +

∫ 1

ř

θdF (n,2)(θ)

)
−
∫ 1

0

θdF (n−1,1)(θ).

Observe that ř = 1/λ(ř) by definition of the function r̂, where λ(θ) = f(θ)/(1 − F (θ))

denotes for all θ ∈ [0, 1) the hazard function for F . We can write

F (θ) = 1− e−
∫ θ
0 λ(t)dt.

Let µ = (1/ř)
∫ ř

0
λ(t)dt. Then ∫ ř

0

(λ(t)− µ)dt = 0.

Because λ(t)− µ is weakly increasing in t,

∀θ ∈ [0, ř] :

∫ θ

0

λ(t)dt ≤
∫ θ

0

µdt = θµ.

Therefore,

∀θ ∈ [0, ř] : F (θ) ≤ J(θ) ≡ 1− e−θµ.

Also define J(θ) = F (θ) for θ ∈ (ř, 1]. Then J(ř) = F (ř) and F stochastically dominates J .

Therefore, using (67),

π(F, n, δ) ≤ π̌ ≡ δ

(
n(1− J(ř))J(ř)n−1ř +

∫ 1

ř

θdJ (n,2)(θ)

)
−
∫ 1

0

θdJ (n−1,1)(θ). (68)

For arbitrary i.i.d. random variables with densities, the highest of n− 1 dominates the 2nd

highest of n in terms of the likelihood ratio. Therefore, the expectation of the highest of n−1
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conditional on being greater or equal to ř is greater or equal to the respective conditional

expectation of the 2nd highest of n,

1

1− J (n,2)(ř)

∫ 1

ř

θdJ (n,2)(θ) ≤ ě ≡ 1

1− J (n−1,1)(ř)

∫ 1

ř

θdJ (n−1,1)(θ).

Therefore, using the definition of π̌ from (68),

π̌ ≤ δ
(
n(1− J(ř))J(ř)n−1ř + (1− J (n,2)(ř))ě

)
−
∫ ř

0

θdJ (n−1,1)(θ)− (1− J (n−1,1)(ř))ě.

Because J (n−1,1)(ř) ≤ J (n,2)(ř) and ě ≥ ř, it follows that

π̌ ≤ δ
(
n(1− J(ř))J(ř)n−1ř + (1− J (n,2)(ř))ř

)
−
∫ ř

0

θdJ (n−1,1)(θ)− (1− J (n−1,1)(ř))ř

= δ
(
1− (1− e−z)n

)
ř

−ř(n− 1)
1

z

∫ z

0

τe−τ (1− e−τ )n−2dτ − (1− (1− e−z)n−1)ř

= ř(δρ(z, n)− η(z, n)), (69)

where z ≡ µř = µ/λ(ř) ≤ 1 and we have made the substitution τ = θµ in the integral.

Because δ ≤ δn, (63) implies δρ(z, n) − η(z, n) ≤ 0. Hence, (69) together with (68) shows

(66). QED

Proposition 3 below shows that the presence of a resale opportunity never reduces initial

seller revenue, and strictly increases it if the speculator plays an active role. This result

follows because each regular-bidder type bids at least as much in the presence of a resale

opportunity as without one, and the initial seller collects the speculator’s bid if she wins. The

proof below derives the result by comparing the differential equation (18) with the differential

equation that is relevant in the absence of a resale opportunity (cf. Lemma 13).10

10A direct proof that does not go through the differential equation (18) would follow the arguments leading

to (34) in the proof of Lemma 11, which is sufficient to make the appropriate comparison of differential

equations.
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Proposition 3 For any regular-bidder number n ≥ 2, discount factor δ ∈ (0, 1), and dis-

tribution F satisfying Assumption 1, the presence of a resale opportunity does not reduce

initial seller revenue from a first-price or Dutch auction, and strictly increases it if (F, n, δ)

is such that the speculator plays an active role.

Proof. From (18) it follows

β′(θ) ≥ N(θ, β(θ)) a.e. θ ∈ [0, 1]. (70)

By β(0) = 0, Lemma 13, and (70),

∀θ ∈ [0, 1] : β(θ) ≥ βI(θ).

This shows that the resale opportunity never reduces initial seller revenue. If the speculator

wins with positive probability, the resale opportunity strictly increases initial seller revenue

because the initial seller collects the speculator’s bid. QED

3 The second-price auction with resale

In this section we construct and discuss a continuum of pure-strategy perfect Bayesian equi-

libria for second-price auctions with resale where the speculator plays an active role. Propo-

sition 4 describes the equilibria. Proposition 5 and Proposition 6 evaluate the impact of a

resale opportunity on initial seller revenue.

Let β denote bidder i’s (i ∈ I) bid in the second-price auction as a function of her use

value. Let b̂s = b̃s denote the speculator’s bid (we do not allow randomization, hence b̃s is a

degenerate random variable).

To define post-auction beliefs, consider any bidder j ∈ I and let bj ≥ 0 denote her bid.

Let i ∈ I ∪{s} denote the label of the winner. Then, the probability distribution Πj(· | i, bj)

denotes the post-auction belief about j’s use value of bidders other than j.

Let M(i,b−i, θi) denote the resale mechanism used by the resale seller i ∈ I ∪ {s} after

a second-price auction when the vector of losers’ bids is b−i ∈ [0,∞)n and i’s use value is

θi. For all i, j ∈ I ∪ s with j 6= i, all b−i, and all θi, θj, let Pj(i,b−i, θi, θj) denote the net
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expected transfer from bidder j of type θj to the other bidders (including the transfer to

i) in the mechanism M(i,b−i, θi). Let Qj(i,b−i, θi, θj) denote the probability that bidder

j obtains the good. Let P (i,b−i, θi) denote the expected transfer to the resale seller i, and

Q(i,b−i, θi) the probability that the resale seller keeps the good.

For all i ∈ I, bidder i’s expected payoff when she bids bi ≥ 0 and has the use value θi

equals

ui(bi, θi) = E[(
−b̃

(1)
−i + max{θi, δ

(
θiQ(i, b̃−i, θi) + P (i, b̃−i, θi)

)
}
)

1w(bi,b̃−i)=i

+
∑
j 6=i

δ
(
θiQi(j, (bi, b̃−j−i), θ̃j, θi)− Pi(j, (bi, b̃−j−i), θ̃j, θi)

)
1w(bi,b̃−i)=j ],

where w denotes the period-1 winner as a function of the bid profile, and where the max-term

reflects the condition that after winning in period 1 bidder i decides optimally whether to

consume the good or offer it for resale. The speculator’s payoff when she bids bs ≥ 0 is given

by

us(bs) = E[
(
−b̃

(1)
−s + δP (s, b̃−s, θs)

)
1w(bs,b̃−s)=s ].

The equilibrium conditions are (71) that post-auction beliefs about auction losers are deter-

mined by Bayes rule whenever possible, (72) that the resale mechanism is chosen according

to Assumption 4, and (73, 74) that period-1 behavior is optimal.

Definition 2 A tuple (β, b̂s,M) is a quasi-symmetric regular equilibrium of the second-

price auction with resale if there exists a belief system

(Πj(· | i, bj))j∈I, i∈I∪{s}, bj≥0 such that the following holds:

∀i ∈ I ∪ {s}, j ∈ I \ {i}, bj ≥ 0 :

Πj(· | i, bj) = F̂β−1(bj) if bj ∈ β([0, 1]), (71)

∀i ∈ I ∪ {s}, b−i ∈ [0,∞)n, θi :

M(i,b−i, θi) = M̂((Πj(· | i, bj))j∈I , θi, i), (72)
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∀i 6= s, θi : β(θi) ∈ arg max
bi≥0

ui(bi, θi), (73)

b̂s ∈ arg max
bs≥0

us(bs). (74)

This equilibrium concept is in the spirit of perfect Bayesian equilibrium, combined with

the symmetry and regularity restrictions formulated in Assumption 2. Like in the first-price

auction case (see the explanation below Definition 1), an equilibrium condition on the post-

auction beliefs about the auction winner is omitted because it would play no role for our

analysis.

The result below describes our equilibria. The structure of these equilibria is analogous

to the equilibria constructed in Proposition 2 of the Note. Condition (77) states that the

resale mechanism used by the speculator is a standard auction with an optimal reserve price.

Observe that if the speculator wins at a strictly positive price, then she is certain about the

maximum use value among all bidders (see (78)), hence the standard auction yields the same

outcome as a take-it-or-leave-it offer equal to the auction’s reserve price.

Proposition 4 For any regular-bidder number n ≥ 2, discount factor δ ∈ (0, 1), and distri-

bution F satisfying Assumption 1, and every θ∗ ∈ [0, 1], the second-price auction with resale

has a quasi-symmetric regular equilibrium (β, b̂s,M) with the properties (75), (76), (77). It

is supported by beliefs satisfying (78).

∀θi : β(θi) =

 0 if θi ∈ [0, θ∗),

θi if θi ∈ (θ∗, 1].
(75)

b̂s = θ∗ − δ
(
θ∗ − P̂θ∗(θ

∗)
)

. (76)

∀b−s : M(s,b−s, 0) =


S(r̂(θ∗)) if b

(1)
−s = 0,

S(θ∗) if b
(1)
−s ∈ (0, θ∗),

S(b
(1)
−s) if b

(1)
−s ∈ (θ∗, 1].

(77)

∀i, j 6∈ {s, i}, bj, θj : Πj(θj | i, bj) =


F̂[0,θ∗](θj) if bj = 0,

1θj≥θ∗ if bj ∈ (0, θ∗),

1θj≥bj
if bj ∈ (θ∗, 1].

(78)
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The proof is a straightforward generalization of the arguments leading to the proof of

Proposition 2 in the Note, except for the following complication. With multiple private-value

bidders, we have to show that a regular bidder with type θi < θ∗ will not deviate to a bid in

[b̂s, θ
∗] and subsequently offer the good for resale if she wins. A detailed proof is below; here

is a sketch of the argument. Suppose that bidder i makes such a deviation and suppose if she

wins then she appropriates the entire expected surplus that is available in the resale market.

Because an increase of θi changes the resale surplus only if all bidders other than i have types

below θi, the marginal change in expected resale surplus due to an increase of θi equals the

probability that all bidders other than i have types below θi. But this probability equals (or

is an upper bound for, if θi is below the resale reserve price r̂(θ∗)) the probability that bidder

i obtains the good if she bids 0 and waits for the speculator’s resale mechanism. Hence, using

the envelope theorem, the derivative of bidder i’s equilibrium payoff with respect to θi is at

most as great as the derivative of the expected resale surplus obtained from the deviation.

Hence, if for any type θi < θ∗ the deviation it is profitable then it the deviation is also

profitable for type θi = θ∗. But for type θ∗ the deviation is not profitable by construction of

b̂s.

Proof of Proposition 4. The proof of (71), (72), and (74), is straightforward. The

proof of (73) is straightforward, too, except for one step: we have to show that a bidder i ∈ I

with type θi ≤ θ∗ cannot profit from deviating to a bid bi ∈ [b̂s, θ
∗] and offering the good for

resale if she wins. Observe that bidder i’s resale payoff cannot exceed the entire expected

surplus that is available in the resale market:

ui(bi, θi) ≤ ui(θi) ≡
(
−b̂s + δE

[
max{θi, θ̃

(1)
−i } | θ̃

(1)
−i ≤ θ∗

])
F (θ∗)n−1. (79)

A straightforward computation shows that

∂ui

∂θi

(θi) = δF (θi)
n−1. (80)

Bidder i’s equilibrium payoff equals

ui(0, θi) = δ(θiQ̂θ∗(θi)− P̂θ∗(θi))F (θ∗)n−1.
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The Envelope Theorem implies

∂ui

∂θi

(0, θi) =

 δF (θi)
n−1 if θi > r̂(θ∗)

0 if θi < r̂(θ∗).
(81)

By (76),

ui(0, θ
∗) ≥ ui(θ

∗). (82)

Hence, for all θ′i ≤ θ∗,

ui(0, θ
′
i)− ui(θ

′
i)

(82)

≥ ui(0, θ
′
i)− ui(0, θ

∗)− (ui(θ
′
i)− ui(θ

∗))

=

∫ θ∗

θ′i

(
∂ui

∂θi

(θi)−
∂ui

∂θi

(0, θi)

)
dθi

(80), (81)
= ≥ 0,

which completes the proof. QED

In contrast to the first-price/Dutch auction setting (cf. Proposition 3), the presence

of a resale opportunity may either increase or decrease initial seller revenue, depending on

which θ∗-equilibrium is played. This comparison assumes that in the absence of a resale

opportunity all bidders use the dominant strategy of bidding their use values.

Proposition 5 For any regular-bidder number n ≥ 2, discount factor δ ∈ (0, 1), and

distribution F satisfying Assumption 1, the second-price auction with resale has quasi-

symmetric regular equilibria such that the initial seller’s expected revenue is larger (alterna-

tively, smaller) than the expected revenue that results when all bidders bid their use values.

Here is a sketch of the proof. In the θ∗-equilibrium with θ∗ = 0 all bidders bid their use

values. It is thus sufficient to show that the revenue of a θ∗-equilibrium with θ∗ > 0 is larger

than the revenue of a 0-equilibrium if θ∗ is close to 0, and smaller if θ∗ is close to 1. There

exist two distinct events that cause the revenue of a θ∗-equilibrium with θ∗ > 0 to differ from

the revenue that arises in the 0-equilibrium. Event (i) is that θ∗ lies between the highest

and the second-highest use value, in which case revenue changes from the second-highest
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use value to the speculator’s bid. Event (ii) is that θ∗ is larger than the highest bidder use

value, in which case revenue falls from the second-highest use value to 0. If θ∗ approaches

1, the probability of (i) becomes small and the probability of (ii) does not; this implies that

expected revenue is reduced. If θ∗ tends to 0 both events’ probabilities tend to 0, but event

(i) allows one buyer’s use value to stay above θ∗ and thus becomes infinitely more likely than

event (ii). The expected payoff loss from event (ii) is of the order θ∗. It is thus sufficient to

show that event (i) results in an expected payoff gain of the order θ∗. Using the fact that the

expected resale payment of type θ∗ exceeds the speculator’s bid, one obtains a lower bound

for the expected payoff difference in terms of the underlying distribution F . Using properties

of order statistics, one can verify that the payoff difference is positive of the order θ∗ if F is

uniform. Because any continuously differentiable distribution is approximately uniform on

any small interval, the argument extends to any F .

Proof of Proposition 5. For all θ∗ ∈ [0, 1], let R(θ∗) denote the initial seller’s

expected revenue in a θ∗-equilibrium. In particular, π(0) is the expected revenue of the initial

seller when every bidder bids her use value in period 1. We will show that R(θ∗) > R(0) for

all θ∗ sufficiently close to 0 and R(θ∗) < R(0) for all θ∗ sufficiently close to 1.

Let θ̃(1) and θ̃(2) denote the highest and second highest use value among the regular

bidders.

R(θ∗)−R(0) = Pr[θ̃(2) < θ∗ < θ̃(1)](b̂s − E[θ̃(2) | θ̃(2) < θ∗ < θ̃(1)])

+ Pr[θ̃(1) < θ∗](0− E[θ̃(2) | θ̃(1) < θ∗]). (83)

We have Pr[θ̃(2) < θ∗ < θ̃(1)] = nF (θ∗)n−1(1 − F (θ∗)) → 0 as θ∗ → 1. Thus, R(θ∗) < R(0)

for all θ∗ sufficiently close to 1.

Let us now consider the case where θ∗ is close to 0. From (76) it follows b̂s ≥ P̂θ∗(θ
∗).

Hence, (83) implies

R(θ∗)−R(0) ≥ Pr[θ̃(2) < θ∗ < θ̃(1)](P̂θ∗(θ
∗)− E[θ̃(2) | θ̃(2) < θ∗ < θ̃(1)])

−Pr[θ̃(1) < θ∗] E[θ̃(2) | θ̃(1) < θ∗]. (84)
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By Lemma 1 and because r̂′(0) = 1/2,

P̂θ∗(θ
∗)

θ∗
= 1− 1

θ∗F (θ∗)n−1

∫ θ∗

θ∗/2

(f(0)θ + O(θ))n−1 dθ +
O(θ∗)

θ∗

= 1− 1

θ∗F (θ∗)n−1

∫ θ∗

θ∗/2

(
f(0)n−1θn−1 + O(θn−1)

)
dθ +

O(θ∗)

θ∗

= 1− f(0)n−1

θ∗F (θ∗)n−1

(
θ∗n

n
(1− 1

2n
) + O(θ∗n)

)
+

O(θ∗)

θ∗
.

Therefore,

lim
θ∗→0

P̂θ∗(θ
∗)

θ∗
= 1− 1

n
(1− 1

2n
) =

n− 1

n
+

1

n2n
(85)

Similarly,

lim
θ∗→0

E[θ̃(2) | θ̃(2) < θ∗ < θ̃(1)]

θ∗
=

n− 1

n
(86)

and

lim
θ∗→0

E[θ̃(2) | θ̃(1) < θ∗]

θ∗
=

n− 1

n + 1
. (87)

Moreover,
Pr[θ̃(2) < θ∗ < θ̃(1)]

Pr[θ̃(1) < θ∗]
= n

1− F (θ∗)

F (θ∗)
→θ∗→0 ∞. (88)

Taking (84), (85), (86), (87), and (88) together implies that R(θ∗) > R(0) if θ∗ is small.

QED

The final Proposition 6 assumes that the initial seller is a player who’s objective is to

maximize expected revenue. We maintain the assumption that the initial seller is restricted

to a second-price auction, but assume that she can set an arbitrary reserve price before the

auction begins. Proposition 6 shows that the initial seller’s revenue in such an extended

second-price auction game with resale can be smaller than her revenue in the absence of a

resale opportunity (where all bidders have a dominant strategy to bid their use values).11

Observe that a special case covered by Assumption 4 is that the resale seller is, like the

initial seller, restricted to a second-price auction with reserve price. Hence, Proposition 6

shows that the presence of a resale opportunity can be harmful to the initial seller even if

she has access to the same class of sales mechanisms as the resale seller.

11This result does not hold in environments with a single private-value bidder; cf. footnote 17 in the Note.
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Proposition 6 For any regular-bidder number n ≥ 2 and distribution F satisfying As-

sumption 1, let R∗ denote the initial seller’s revenue in a second-price auction when all

bidders bid their use values and she chooses an optimal reserve price.

Then, for all sufficiently large n and for all δ sufficiently close to 1, the extended second-

price auction game with resale where the initial seller can set a reserve price has a perfect

Bayesian equilibrium such that the initial seller’s expected revenue is smaller than R∗.

Proof. Let r∗ denote the reserve price that is optimal for the initial seller if all agents

bid their use values in period 1. We will show that if δ is sufficiently close to 1, then there

exists an equilibrium such that the initial seller sets a reserve price r > r∗ and her expected

revenue is smaller than R∗.

Because r∗ < 1 is independent of n (Myerson, 1981) and R∗ → 1 as n →∞,

r∗ < δR∗, (89)

assuming that n is sufficiently large and δ is sufficiently close to 1.

Observe that the speculator’s payoff in the θ∗-equilibrium with θ∗ = 1 constructed in

Proposition 4 equals δR∗, and her auction bid b̂s > R∗ by (76) and Lemma 3. Hence, the

1-equilibrium remains valid, with a reduced payoff for the speculator, if the initial seller sets

any reserve price r < δR∗.

By (89), there exists r such that

r∗ < r < δR∗.

Using r we can construct continuation equilibria for the continuation games following any

reserve price r ≥ 0 by the initial seller. If r < r, let the 1-equilibrium be played in the

continuation game. If r > r, let the θ∗-equilibrium with θ∗ = 0 be played in the continuation

game. If r = r, let either the 1-equilibrium or the 0-equilibrium be played, depending on

which of these two leads to a higher initial seller revenue.

Given these continuation equilibria, every reserve price r < r results in an expected

revenue of r < R∗ for the initial seller. Any reserve price r > r leads to an initial seller

revenue below R∗ because otherwise we would have r = r∗ by definition of r∗. The reserve
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price r = r leads to the initial seller revenue r < R∗ if the 1-equilibrium is played, and leads

to an initial seller revenue below R∗ if the 0-equilibrium is played (if the revenue R∗ were

reached, we would have r = r∗ by definition of r∗). In summary, any reserve price r ≥ 0

leads to an initial seller revenue below R∗.

4 The English auction with resale

In this section we explain why the equilibrium outcomes that we have constructed for second-

price auctions with resale remain valid if in period 1 an English auction, as modelled by

Milgrom and Weber (1982), takes place. Observe that the second-price auction and the

English auction are not strategically equivalent because we are considering environments

with three or more bidders.

After the English auction is completed, the losers’ bids are publicly known, while the

winner’s bid remains private. This corresponds exactly to the bid revelation that we have

assumed in our analysis of the second-price auction with resale. Hence, if the bidders’

stopping points in the English auction are identical to their bids in the second-price auction,

the bidders’ payoffs are the same across the two auction formats. Thus, the only thing we

need to argue to show that the equilibrium outcomes of Proposition 4 remain valid for the

English auction is that bidding incentives are the same as in a second-price auction. The

difference between the second-price auction and the English auction is that the losing bids

become public during instead of after the auction, so that bidders can revise their beliefs

each time a bidder drops out.

We define bidding in the English auction as follows. Every bidder i ∈ I with use value

θi ∈ [0, 1] stops bidding at price 0 if θi < θ∗, and is willing to bid up to her use value if

θi > θ∗, independently of who stays in and how long. The speculator is willing to bid up to

b̂s, also independently of who stays in and how long.

To see that these bidding strategies are optimal, consider first the speculator’s bidding

incentives, given the regular bidders’ strategies. At the bid 0, it is better to stay in than to

drop out because the latter means she foregoes her chances of winning and making a resale

43



profit. If some regular bidder stays in beyond 0 as well, Bayesian updating requires the

speculator to believe that the use value of this regular bidder is distributed on the support

[θ∗, 1]. She expects the regular bidder to stay in up to her use value, which is beyond b̂s.

Hence, it is optimal for the speculator to drop out at b̂s. If one regular bidder deviates

by stopping at a bid in (0, θ∗], the speculator switches to the belief that the use value of

this regular bidder equals θ∗. Thus, if the speculator wins then she uses the same resale

mechanism as in the second-price auction case.

Now consider the bidding incentives of a bidder i ∈ I with use value θi ∈ [0, 1]. If θi < θ∗,

bidder i has no incentive to stay in beyond the bid 0, for the same reasons as in the second-

price auction case. Finally, consider the case θi > θ∗. Bidder i will stay in until the price

reaches her use value because she expects the same from all other regular bidders once they

stay in at positive bids. When bidder i observes that a competing regular bidder drops out

at a bid in (0, θ∗], she switches to the belief that this regular bidder has the use value θ∗,

and it remains optimal for bidder i to stay in until the price reaches her use value.
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