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Abstract

We analyze a rating agency’s incentives to distort ratings in a model with

a monopolistic profit maximizing rating agency, a continuum of heterogeneous

firms, and a competitive market of risk-neutral investors. Firms sell bonds,

the value of a firm’s bond is known to the firm and observable by the agency,

but not by buyers. Firms can choose to get a rating. The rating agency can

reveal a signal of arbitrary precision about the quality of the bond. In contrast

to the existing literature, we allow aggregate uncertainty. As in the existing

literature, one rating class is optimal. However, the rating agency does not

choose a socially optimal cutoff: the agency is more likely to be too lenient if

the distribution of aggregate uncertainty has a lower mean, a higher variance,

and is more left skewed. It is more likely to be too strict if the opposite holds.
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1 Introduction

Ratings and other quality certifications by third parties play an important role in

today’s economy. For instance, the volume of rated debt issues was over $8,000

billion in 2006. Ratings are used by investors to guide their investment decisions.

They are also crucial for financial regulation: Basel III includes ratings as one cri-

terion for the calculation of the capital adequacy requirements for banks. So does

the Solvency II Directive of the European Union, passed on March 11, 2014, which

harmonizes insurance regulation in the European Union and is scheduled to come

into effect on January 1, 2016.

However, ratings as a basis of regulation have been viewed controversially, es-

pecially after the financial crisis. The major concern is that the ratings used for

regulation are given by rating agencies, which may have an incentive to distort rat-

ings in order to maximize profit. These concerns have been expressed both in public

policy debates and in investigations and lawsuits against rating agencies.1 As a re-

action to this concern, Section 939A of the Dodd-Frank Act (effective since 2010)

requires that all federal agencies “must remove any reference to or requirement of

reliance on credit ratings”.

The current article addresses the question of incentives to distort ratings by a

profit maximizing rating agency under particular consideration of aggregate uncer-

tainty. Aggregate uncertainty plays a major role in many markets. As an example,

for subprime mortgages the question was not only how good the subprime mortgages

were that one particular financial institution invested in. The question was whether

subprime mortgages as a whole were a sufficiently safe investment.

To investigate the effect of aggregate uncertainty on incentives to distort, we

consider a model in which all other possible incentives to distort are shut down.

In particular, we consider a monopolistic rating agency that can credibly commit

1As the most recent example, see the settlement between Standard’s and Poors, the U.S. De-
partment of Justice, and 19 states attorneys general that includes a payment of $1.5 billion by
S&P in the context of the rating of securities backed by subprime mortgages. While “S&P did not
admit to any violations of law”, the rating agency “did sign a statement of facts acknowledging
that its executives in 2005 delayed implementing new models that produced more negative ratings”
(Viswanatha and Freifeld, 2015).
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to a rating strategy in a one period model. This shuts down effects such as forum

shopping, reneging on the ratings strategy, or reputational cycles.

Besides the rating agency there is a continuum of sellers selling bonds. There is

a continuum of investors seeking to buy bonds. The mass of investors is larger than

the mass of sellers, so that competition leads to prices being bid up to the expected

value of a bond. The quality of a seller’s bond is perfectly known to the seller, but

unknown to investors. The rating agency has a technology to perfectly observe the

seller’s quality. Sellers can decide whether they want to be rated. The aggregate

distribution of sellers’ types is initially unknown to all market participants, except

for a common prior about the distribution of the aggregate states of the world. The

states of the world differ by a different aggregate distribution of sellers’ types. After

sellers get rated, the aggregate state of the world is revealed to all market participants

and investors buy the bonds. The price depends on the expected quality in a rating

class for the realized aggregate state of the world.

We show that in accordance to the existing literature, a profit maximizing rating

agency will choose a coarse binary rating: either investment grade or junk bonds.

However, in sharp contrast to the existing literature, aggregate uncertainty leads to

the cutoff not being at the socially optimal level. Whether the rating agency has

an incentive to be too lenient (a negative cutoff) or too strict (a positive cutoff) is

pinned down by three moments of the aggregate belief distribution. The aggregate

belief distribution is defined as follows: Take for every state of the world the mean

quality of bonds that would be bought if quality were publicly known. Market

participants’ belief distribution of these means is the aggregate belief distribution.

The rating agency has more of an incentive to be too lenient if the distribution has

a low mean, a high variance, and a low higher order skewness (defined as the sum

of the third and higher moments). A low higher order skewness can be thought of

as a left skewed distribution, i.e. with a high probability bonds have a mean quality

above average, but the distribution has a fat tail at the bottom which implies that

with a small probability bonds have a very low mean quality. The opposite result

holds for a larger mean, lower variance, and a larger higher order skewness. These

3



results can be interpreted as two opposite effects on the rating agency’s incentive to

distort ratings. One effect is procyclical: they have an incentive to be too lenient

before the outbreak of a crisis (interpreting this period as a period with a large

variance and left skewness of aggregate uncertainty) and an incentive to be too

strict after the outbreak of the crisis. The other effect is countercyclical: a higher

mean in market beliefs about aggregate uncertainty (likely to occur before a crisis)

gives the rating agency an incentive to be too strict and a lower mean (after a crisis)

to be too lenient. While anecdotal evidence suggests that the procyclical effect is

stronger,2 it is ultimately an empirical question, which effect dominates.

This sheds light on a disturbing aspect of using credit ratings for capital adequacy

regulation: they may introduce procyclicality into the system. Capital adequacy

requirements based on ratings (such as in Basel III and the Solvency II Directive)

may be too lenient before and too strict after the crisis. Our theory can be seen

to justify two possible policies to deal with this problem. One policy, as in Section

939A of the Frank-Dodd Act, is to remove any reference to or requirement of reliance

on credit ratings from regulation. This approach has the advantage of having a clear

unambiguous rule. However, this is also viewed controversially, since it may be too

costly for smaller banks to replace external credit ratings with internal credit rating

systems.3 An alternative policy would be to use credit ratings, but take into account

their cyclicality in regulation. In particular, if one believes that the procyclical

element dominates, capital adequacy requirements based on ratings should include

countercyclical elements to counterbalance procyclicality.

We provide two extensions of our main result. First, we outline an empirical

strategy to determine whether the procyclical or the countercyclical effect dominates.

While an empirical analysis is beyond of the scope of this paper, we show how the

moments of the distribution of aggregate uncertainty can be identified from the

prices of financial derivatives.

2In hindsight, observers of financial markets considered the ratings of agencies to have been too
lenient before and too strict after the crisis.

3See, for example, http://www.americanbanker.com/bankthink/an-easy-fix-to-dodd-franks-
credit-ratings-rule-1063396-1.html.
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Second, we extend the model to a setup with risk aversion. A model with risk

aversion explains why there are multiple rating categories and not just one (i.e.

investment grade, and possibly a second, speculative grade). The reason is that

with risk aversion, investors value more precise information about the quality of

an asset to reduce risk. We provide numerical examples to illustrate that a hybrid

model of risk aversion and aggregate uncertainty preserves the key insights about

the rating agency being too lenient or too strict, but additionally predicts multiple

rating categories.

Our paper relates to a large literature on rating agencies, experts, and repu-

tation. We differ from all papers mentioned below by having market participants’

uncertainty about the aggregate distribution of qualities as the driving force that

determines the rating strategy.

If one were to remove aggregate uncertainty from our model, it would reduce

to the model in Lizzeri (1999)’s seminal contribution on certification intermediaries.

Lizzeri (1999) shows the by now well known result that certification intermediaries

choose two categories (corresponding to investment grade and junk bonds) and set

a cutoff at 0 which is the first-best level. (Note that this result can also be viewed

as only one rating category being chosen – investment grade – and other assets not

being rated.) Lizzeri (1999)’s work has been extended in a number of directions,

including Doherty, Kartasheva, and Phillips (2012)’s work on risk-averse buyers.

With risk-averse buyers, it can be optimal to have more than two categories.

Two papers allow for changes in the economic environment in a dynamic model.

In Bolton, Freixas, and Shapiro (2012) the rating agency trades off short term profits

from consumers taking the rating at face value and long term reputational concerns.

They assume that in a boom the fraction of naive consumers is high and, together

with a low default risk, this gives the agency an incentive to inflate ratings during

booms. Bar-Isaac and Shapiro (2013) investigate the quality of ratings when accu-

racy is costly for the agency. They combine reputational concerns with the change

of economic fundamentals which affect, e.g., the costs for accuracy, possible profits

and the default probability. They find that the rating quality is lower in booms than
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in recessions. Our analysis is complementary to these articles, since we show that a

rating agency has an incentive to distort ratings even if all investors are rational and

it is costless for the rating agency to assess the quality of the rating. Our results

rely on the joint distribution of aggregate and idiosyncratic uncertainty.

In a wider sense, our paper also relates to the literature on experts and reputa-

tion. Reputation gives an incentive to report truthfully. Strausz (2005) shows that

reputation leads to monopolization and that honest certification may require a price

above that of a monopolist. Nevertheless, reputation is often not enough to ensure

accurate information transmission (see Ottaviani and Sørensen, 2006; Bouvard and

Levy, 2009; Mariano, 2008; Pollrich and Wagner, 2013). Mathis, McAndrews, and

Rochet (2009) show that reputation and confidence cycles may exist, because the

certifier likes to build up reputation so as to later inflate the grades and make larger

profits.

The paper is structured as follows. Section 2 describes the model. Section 3

shows that it is optimal to rate according to a simple cutoff rule and Section 4

derives conditions under which this cutoff is positive or negative. Section 5 describes

a stylized empirical identification strategy. Section 6 shows that with risk-averse

investors several rating classes can be optimal but that the effects of aggregate

uncertainty on the optimal cutoff remain. Section 7 concludes.

2 Model

There is one rating agency, a continuum of firms, and a continuum of possible

investors. Each firm sells a bond of quality t, where t is a random variable with

support [t, t] with t < 0 < t. The firm has private information about the quality.

Investors are risk neutral and an investor’s expected gross utility from buying the

good is equal to the quality t. A firm’s utility of retaining the bond is normalized

to zero. The quality t of the bond can be thought of as capturing the probability of

default and the loss given default.

There are N different states of the world. The probability of the world being in
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state i is εi. Having a two dimensional distribution (different states of the world,

different distributions of qualities in each state of the world) adds a considerable

amount of complexity. To still have a tractable model, we impose a restriction on

this two dimensional distribution. We assume that there is a mass κi of sellers whose

quality t is so low that one would never want to rate them (we will formalize this

later on in Assumption 2). There is a mass µi of sellers whose quality t is so high

that one would always want to rate them. And then there is a mass λi of sellers with

intermediate qualities t ∈ (t, t). We allow for arbitrary distributions of κi, λi, µi

(with the only restrictions that the sum κi + λi +µi is constant and Assumption 2),

but restrict the distribution conditional on being in (t, t) to be a distribution F

which is the same for all states. We assume that F is continuously differentiable

with density f(t) > 0 for all t in (t, t).

t 0 t

λif(t)

t

density

κi
µi

Figure 1: κi and µi are the mass points at t and t in state i. λi is the mass in state
i that is allotted to the types t ∈ (t, t) with the distribution F .

Further, define the expected masses on (t, t) as µ̃ :=
∑

i εiµi and on t as λ̃ :=∑
i εiλi. Normalize λ̃ to 1. The probabilities εi and the distributions of quality are

known to all players.

A firm can choose to pay an upfront fee P to the rating agency in order to get

rated before the state of the world becomes known to market participants. The

agency rates firms that paid for a rating according to a precommitted rating strat-

egy.4

The timing of moves is as follows:

4It does not matter in equilibrium whether the strategy is known at the beginning or not.
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• The agency sets the rating fee P and commits to a rating strategy s, s(t) = r,

s : R→ R ∪ {∅}.

• Nature draws the state of the world i and quality t of each firm.

• The firms observe their own qualities, but not the state of the world, and

decide whether to go to the agency to ask for a rating or not. This decision

depends on the own type t, the strategy of the agency s and the price P .

• The agency observes the quality of the firms asking for ratings and gives rat-

ings according to its strategy. The ratings are publicly observable. However,

investors do not observe whether a firm went to the rating agency if the firm

gets no rating (∅).

• Observing the state of the world, the buyers decide how much to bid in a second

price auction for a good. Since it is a second price auction, buyers bid their own

expected valuation which depends on their belief about the expected quality

given the information (s, P, r, i). Assuming that there are more investors than

firms, investors will pay exactly the expected quality in equilibrium.

To solve the setup for equilibria we use Perfect Bayesian Equilibrium. We restrict

the strategy of the firms to pure strategies and look at symmetric equilibria.

The profits of the agency in one state of the world is the rating fee P times the

mass of firms asking for a rating. This mass depends on P and the rating strategy s.

The agency is risk neutral and chooses s and P to maximize expected profits before

knowing the state of the world.

The rating agency’s rating strategy s partitions the set [t, t] into M subsets, with

each subset m = 1, ...,M being the set of types Tm = {t|s(t) = rm} with M distinct

rm.5 We will call these subsets rating classes in the following. Since in the end only

5Technically speaking, there are M + 1 subsets because there can be types which do not receive
any rating, s(t) = ∅. We will show in the following of this paper that it cannot be optimal to have
more than two rating categories. Therefore, for the sake of notational simplicity, we do not consider
an uncountable infinity of rating classes. To take into account the possibility of an uncountable
infinity of rating classes, e.g. full disclosure, one could use the correspondence T (r) = {t|s(t) = r}
with r ∈ R ∪ {∅} instead of the sets {Tm}Mm=1.
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the M distinguishable classes {Tm}Mm=1 matter and not the labels {rm}Mm=1 attached

to them, the following analysis will focus on {Tm}.

It is useful to define the expected quality in state i conditional on t being above

a threshold x > t as

Ei(x) :=
λi
∫ t
x
tdF + µit

λi
∫ t
x
dF + µi

.

A firm in (t, t) attaches probability ε̂i := εiλi/λ̃ to being in state i. Consequently,

from a (t, t) firm’s perspective, the expected quality above a threshold x over all

states is

Ẽ(x) :=
∑
i

ε̂iEi(x).

In the following, we will assume that the virtual valuation function attached to Ẽ(x)

is monotone in x for x ∈
(
t, t
)
.

Assumption 1. Ẽ(x)− Ẽ ′(x)1−F (x)+µ̃
f(x)

is monotone in x for x ∈
(
t, t
)
.

This assumption basically ensures that the second-order condition is fulfilled

whenever the first-order condition is fulfilled and it excludes the corner solution

that it is optimal to only rate t. Monotonicity of the virtual valuation function is a

standard assumption, see e.g. Myerson (1981).

We further assume that t is sufficiently small:

Assumption 2.

t < −
λi
∫ t
0
tdF (t) + µit

κi
, ∀i = 1, ..., N

Assumption 2 makes sure that we do not have to deal with the uninteresting

corner solution in which the rating agency wants to rate all firms, including t firms

(see Lemma 1 below).6

To avoid analytical intractability even for simple aggregate distributions we have

described above an assumption on the idiosyncratic distribution, namely that there

6Without Assumption 2, our results for the interior solutions given by the first-order conditions
would still hold, but we would have to distinguish between the cases with an interior solution and
a corner solution.
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are two mass points at t and t, respectively, and that the density on (t, t) moves

proportionally in different states. This simplification buys us a surprising level of

generality in terms of the distribution of aggregate uncertainty: we do not need to

make any assumptions about a first-order stochastic dominance ranking of different

states of the world and do not need to assume the monotone likelihood ratio property.

Our assumption can be viewed as the distribution above a threshold being collapsed

into the mass point t and the distribution below a threshold being collapsed into t.

3 Optimality of Threshold Rating Strategy

In the following, we will show that it is optimal to rate all firms in an interval [x, t]

in one rating class and not to give a rating to all firms with t < x. Formally, s(t) = 1

for all t ≥ x and s(t) = ∅ for all t < x.7 We will show this in four steps. First, we

show that it cannot be optimal to exclude type t. Second, we show that the price

of a rating is determined by firms with t < t. Third, given that t is included, it

is optimal to have only one rating class rather than multiple classes. Fourth, given

that there is only one rating class, the set of types belonging to this class has to be

convex.

While the following Lemmas are intuitive, their proofs are surprisingly long.

We therefore provide an intuition in the main text and relegate the proofs to the

Appendix.

Lemma 1. (i) It cannot be optimal that t ∈ ∪Mm=1Tm. (ii) It cannot be optimal that

t 6∈ ∪M̃m=1T̃m.

Part (i) of the Lemma holds by Assumption 1. The intuition for part (ii) of the

Lemma is that t should be included in the rating because it increases the mass of

rated firms as well as, due to its high type, other firms’ willingness to pay for a

rating.

Next, we state a lemma which will be useful throughout our analysis. The lemma

states that if both firms with t ∈
(
t, t
)

and with t = t are in the same rating class,

7This is equivalent to s(t) = 1 for all t ≥ x and s(t) = 0 for all t < x because firms with t < x
are not rated in equilibrium.
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then firms with t ∈
(
t, t
)

have a lower willingness to pay for a rating than firms with

t = t.

Lemma 2. Take an arbitrary rating class T that includes firms with t ∈
(
t, t
)

and

t = t. The willingness to pay for a rating is higher for t than for t ∈ (t, t).

The reason is that firms update ε̂i differently and we show that firms with a type

t assign a higher probability to states with higher expected quality than firms with

t ∈ (t, t). Lemma 2 can be used to prove the next lemma, which states that if there

are multiple rating classes and the highest type t is included, then it is better to

merge all rating classes to one single class.

Lemma 3. M = 1 with T1 = ∪M̃m=1T̃m is better than
{
T̃m

}M̃
m=1

with M̃ > 1 if

t ∈ ∪M̃m=1T̃m.

Considering types that the agency intends to attract, the rating fee is always

determined by the type with the lowest willingness to pay for a rating. Merging the

rating class with a lowest willingness to pay with classes with a higher willingness to

pay, the expected quality and thus, also the minimum willingness to pay increase.

The next lemma states that all firms above a threshold are rated which means

that no types in between are excluded.

Lemma 4. If M = 1 and t ∈ T1, then T1 has to be convex.

If the set were not convex, there would be at least one unrated hole in the middle

and the agency could rate firms in the hole instead of rating some other types below

with the same mass. This would increase the expected type in every state and,

therefore, also the rating fee the agency could charge from the firms. Therefore, a

non-convex T1 cannot be optimal.

Lemmas 1, 3, and 4 together lead to the following proposition.

Proposition 1. It is optimal to choose M = 1 with T1 = [x, t] for some x.
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Proposition 1 shows that the best equilibrium for the rating agency is such that

the agency offers the following ratings strategy:

s(t) =

1 if t ≥ x,

∅ otherwise,

that is, all firms above some cutoff x get a positive rating. Subsequently, all firms

with t ∈ [x, t] get rated and investors pay the expected quality over [x, t].

As usual in such models, there is a multiplicity of equilibria in the subgame

following the ratings agency’s announcement of its price P and rating strategy s.

For example, there is the trivial equilibrium in which no firm applies for a rating

and investors have the off-equilibrium belief that firms that do get a rating are of

the worst possible rated quality x. Since x is less than the price of a rating P , it is

a best response for firms to stay unrated.

The usual arguments for selecting the equilibrium we described apply: The rating

agency has a first-mover advantage, hence, it is reasonable that the equilibrium most

favorable to the rating agency will be selected. Further, by a small perturbation of

its strategy, the rating agency can get rid of undesired equilibria. For example, if

no firm gets a rating, the agency might incentivize the first firms who apply for a

rating in order to jump-start the market.8

4 Optimal Threshold

By Proposition 1 we can restrict our attention to threshold rules which consist of all

types above a cutoff x being pooled in one class and all types below not being rated.

If there were only one state of the world, the optimal threshold would be x = 0. To

see this, take a model with only one state of the world, e.g. by setting µi = µ̃ and

8A simple, albeit extreme example is the following: As long as not all firms with a quality
t ∈ [x, t] enter, firms get their rating fees refunded and get an additional small compensation. This
makes sure that any equilibrium in which not all firms in [x, t] get rated breaks down, so that the
refund never has to be paid in equilibrium.
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λi = λ̃ = 1 for all i. Then the agency’s profit is

Π = (1− F (x) + µ̃)

∫ t
x
tdF (t) + µ̃t

1− F (x) + µ̃
=

∫ t

x

tdF (t) + µ̃t.

which is equal to welfare. The first derivative is
∂Π

∂x
= −xf(x), which is equal 0 if

x = 0. Therefore, the optimal threshold for the agency is x = 0.9 This special case

of our model corresponds to Lizzeri (1999)’s results.

If there are N states of the world, the rating agency’s profit is

Π(x) :=

(
N∑
i=1

(λi(1− F (x)) + µi)εi

)(
N∑
j=1

Ej(x)ε̂j

)
=(1− F (x) + µ̃)Ẽ(x)

where Ẽ(x) is the expected value of a rating from a firm’s perspective which assigns

the probabilities ε̂i to different states.

The welfare with N states of the world is

W (x) :=
N∑
i=1

(
λi

∫ t

x

tdF (t) + µit

)
εi

=
N∑
i=1

Ei(x)(λi(1− F (x)) + µi)εi.

Define the expected type on [x, t) as

E0(x) :=

∫ t
x
tdF (t)

1− F (x)
.

Rearrange the expression for the welfare to

W (x) =
∑
i

(λi(1− F (x))E0(x) + µit)εi

=(1− F (x) + µ̃)Ê(x)

with

Ê(x) :=
(1− F (x))E0(x) + µ̃t

1− F (x) + µ̃
,

9It is easy to check that the second-order condition is also satisfied at x = 0.
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which can also be written as

Ê(x) =

∑
i εi(λi(1− F (x)) + µi)Ei(x)

1− F (x) + µ̃
.

Ê(x) is the expected value of a rating from a welfare perspective which takes into

account that the quantity of firms being rated (λi(1 − F (x)) + µi) is different in

every state. In the following, we will drop the argument x in Ei(x), E0(x), Ẽ(x),

Ê(x) when it is unambiguous in order to simplify notation. Ê and Ẽ compare in

the following way.

Lemma 5. The value of a rating is larger from a welfare then from a firm’s per-

spective; Ê ≥ Ẽ for all x.

This implies that W (x) ≥ Π(x). For non-degenerate distributions of the state of

the world, the inequality is strict and in contrast to a one-state-of-the-world setup

the rating agency cannot extract the whole surplus, W (x) > Π(x).10

The derivative of the profit with respect to the cutoff is

Π′(x) = (1− F (x) + µ̃)
∑
i

ε̂i
∂Ei
∂x
− f(x)Ẽ(x)

= −f(x)

 Ẽ(x)︸ ︷︷ ︸
marginal effect

− 1− F (x) + µ̃

f(x)

∂Ẽ

∂x︸ ︷︷ ︸
inframarginal effect

.

 (1)

and we will show later that the first order condition is sufficient for profit maximiza-

tion. Thus, the profit maximizing cutoff is given by Π′(x) = 0. Changing the cutoff

has two opposite effects on the agency’s profit; increasing the cutoff decreases the

mass of firms asking to be rated (marginal effect) but it also increases the expected

quality of firms being rated and by this it increases a firm’s willingness to pay for

being rated (inframarginal effect).

We call the expression in the squared brackets in (1) the virtual valuation function

10Even if ε̂i = εi for all i, the inequality is strict for non-degenerated distributions. Besides by
the updating of ε̂i, the difference between Ê and Ẽ is caused by the different mass of firms being
rated in different states of the world.

14



for Ẽ.11 By Assumption 1 it is monotone and, thus, the first order condition is

sufficient to find an optimum.12 This also implies that there is a unique solution of

the first order condition.

We are interested in comparing the profit maximizing cutoff with the welfare

maximizing cutoff. Thus, we also have to determine the socially optimal cutoff. The

derivative of welfare with respect to the threshold is

W ′(x) = −f(x)

 Ê(x)︸ ︷︷ ︸
marginal effect

− 1− F (x) + µ̃

f(x)

∂Ê

∂x︸ ︷︷ ︸
inframarginal effect

 . (2)

or written in a simpler way

W ′(x) = −
∑
i

ε̂iλixf(x) = −xf(x)

which is the same as for one state of the world. The derivative is 0 if x = 0 and

thus, the welfare maximizing cutoff is at 0.

To derive the difference between the profit of an agency and the welfare, we write

the profit as

Π(x) =

(∑
i

(λi(1− F (x)) + µi)εi

)(∑
j

Ej(x)ε̂j

)

=
∑
j

(
Ej(x)ε̂j

(∑
i

(λi(1− F (x)) + µi)εi

))

=
∑
j

Ej(x)(1− F (x) + µj)ε̂j −
∑
j

Ej(x)ε̂j

(
µj −

∑
i

µiεi

)
=W (x) + L(x)

where L(x) := −
∑

j Ej ε̂j(µj−E[µ]) is the non-extractable part of the surplus (”loss”

compared to extracting total surplus). Remember that W ′(0) = 0 which implies that

11We can rewrite the virtual valuation in terms of Ei as
∑
i εiλi

(
Ei − E′i

1−F+µ̃
f

)
.

12The second order condition follows directly from Assumption 1. That we do not have a corner
solution at x = t can be seen by observing that the profit Π(x) is continuous at x = t and
limx→t Π′(x) < 0. Assumption 2 implies that there is no corner solution at x = t (see proof of
Lemma 1).
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L′(0) = Π′(0). Thus, the incentive for the agency to distort the rating compared to

the welfare maximizing rating is given by the sign of L′(0). The optimal cutoff is

positive if L′(0) > 0 and it is negative if L′(0) < 0.

Proposition 2. The derivative L′(0) is given by

L′(0) =
f(0)Ẽ

t− Ê

(
Ê − Ẽ − (

∑
i ε̂iEi)

2 −
∑

i ε̂iE
2
i

Ẽ

)
. (3)

The proof of Proposition 2 is provided in the Appendix.

Since the expression before the parenthesis is always positive, the sign of L′(0)

and, therefore, the sign of the profit maximizing cutoff depends on the sign of(
Ê − Ẽ − (

∑
i ε̂iEi)

2−
∑

i ε̂iE
2
i

Ẽ

)
. Ê − Ẽ is positive and can be interpreted as the differ-

ence of the expected value of a rating from a social and a firm’s perspective. An

intuition for
(
∑

i ε̂iEi)
2−

∑
i ε̂iE

2
i

Ẽ
is that it is the variance divided by the mean of the

posterior distribution of Ei and it reflects the uncertainty about the state of the

world: if this uncertainty is sufficiently large, the cutoff is negative. The reason for

this is that firms care less about the effect of the cutoff x on the expected quality of

a rated firm if the expected quality is to a large extent driven by uncertainty about

the state of the world. Thus, the sign of L′(0) is determined by the difference of

the expected value of a rating and the ratio of variance to mean of the posterior

distribution of Ei.

While the above expression for L′(0) provides some insights on the determinants

of the optimal cutoff, it is difficult to use it for comparitive statics, since a change of

the mean and variance of Ei will also change Ê. Therefore, in the following, we will

express L′(0) in terms of the moments of the posterior distribution of Ei. Because

of µi = λi(1− F (x))Ei−E0

t−Ei
, we can write

µ̃ =
∑
i

εiλi(1− F (x))
Ei − E0

t− Ei

= (1− F (x))
∑
i

ε̂i
Ei − t+ t− E0

t− Ei

= (1− F (x))

(
−1 + (t− E0)

∑
i

ε̂i
1

t− Ei

)
. (4)
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Plugging (4) into the definition of Ê we get

Ê =
(1− F (x))E0 + µ̃t

1− F (x) + µ̃

=
E0 +

(
−1 + (t− E0)

∑
i ε̂i

1
t−Ei

)
t

1 +
(
−1 + (t− E0)

∑
i ε̂i

1
t−Ei

)
=t− 1∑

i ε̂i
1

t−Ei

.

Define the scaled value of a rating as ei := Ei

t
. Then

∑
i ε̂i

1
t−Ei

=
∑

i ε̂i
1

t−eit
. The

kth derivative of 1
t(1−ei)

with respect to ei is

∂k

∂eki

[
1

t(1− ei)

]
= k!

1

t(1− ei)k+1
.

Using these derivatives one can construct a Taylor series of 1
t(1−ei)

with respect to ei

around ei = 0. This yields

1

t(1− ei)
=
∞∑
k=0

eki
k!

∂k

∂eki

[
1

t(1− ei)

]∣∣∣∣∣
ei=0

=
∞∑
k=0

eki
t
.

Taking expectations over the state of the world yields

∑
i

ε̂i

[
1

t(1− ei)

]
=

1

t

(
1 +m1 +m2 +

∞∑
k=3

mk

)
,

where mk :=
∑

i ε̂ie
k
i is the kth moment of the posterior distribution of ei. This

implies that we can write

Ê = t− t

1 +m1 +m2 +
∑∞

k=3mk

. (5)

Define m3+ :=
∑∞

k=3mk. Observe that (3) simplifies to

L′(0) =
fẼ

t− Ê

(
Ê −

∑
i ε̂iE

2
i

Ẽ

)
. (6)
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Plugging (5), Ẽ = m1t and
∑

i ε̂iE
2
i = t

2
m2 into (6) yields

L′(0) =
fm1t

t
1+m1+m2+m3+

(
t− t

1 +m1 +m2 +m3+

− t
2
m2

m1t

)

=fm1t

(
∞∑
k=0

mk

)[
1− 1

1 +m1 +m2 +m3+

− m2

m1

]
.

Observing that everything outside of the square brackets is positive and that the

optimal cutoff has the same sign as L′(0) yields the main proposition of our paper:

Proposition 3. Define

S := 1− 1

1 +m1 +m2 +m3+

− m2

m1

.

The optimal cutoff is positive if S > 0, negative if S > 0, and zero if S = 0.

Note that S only depends on the moments of ei, more precisely, it depends only

on the mean m1, the second moment m2 and the sum of all higher moments m3+.

For example, assume that L′(0) < 0. Keeping the mean and the second moment

constant and increasing the sum of higher moments, S increases and L′(0) can switch

signs from negative to positive.

We can calculate the threshold m3+ for which L′(0) is 0. Set

1− 1

1 +m1 +m2 +m3+

− m2

m1

= 0

which is equivalent to

m3+ =
m2

2 +m2 −m2
1

m1 −m2

.

Observe that m3+ is always positive because m1 > m2 and m2 −m2
1 is the variance

of ei. This implies that for m3+ < m3+ the expression S is negative and thus

L′(0) = Π′(0) < 0.

Proposition 4. The optimal cutoff for the rating agency is negative if m3+ < m3+

and positive if m3+ > m3+.

We also derive thresholds for m1 and m2. First, observe that S is increasing

in m1 and decreasing in m2 given that m1,m2,m3+ > 0. Second, by setting the
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expression in square brackets to zero and solving for m1 and m2, respectively, one

gets thresholds for m1 and m2 that determine whether the cutoff of the rating agency

is positive or negative. The thresholds are stated in the following two Propositions.

Proposition 5. The optimal cutoff for the rating agency is negative if m1 < m1

and positive if m1 > m1, where

m1 :=
1

2

(
−m3+ +

√
4m2 + (2m2 +m3+)2

)

Proposition 6. The optimal cutoff for the rating agency is negative if m2 > m2

and positive if m2 < m2, where

m2 :=
1

2

(
−1−m3+ +

√
2m3+ + 1 + (2m1 +m3+)2 + 2m3+ + 1

)

Both thresholds, m1 and m2, are positive given that m1,m2,m3+ > 0.

An intuition for these results is that with a high variance and a small higher

order skewness (i.e left-skewed distribution), the value of a rating is highly volatile,

not because of the rating strategy, but because of aggregate uncertainty. Hence

the rating agency worries less about keeping the value of the rating high by being

restrictive on which firms get a rating.

Propositions 4, 5, and 6 have a striking implication: the rating agency has more

of an incentive to be too lenient if the distribution of aggregate uncertainty is more

left skewed (in the sense of a smaller higher order skewness, i.e. a lower m3+), the

mean is smaller, or the variance is larger. Left skewness and a high variance can be

reasonably considered as being associated with a period preceding the beginning of

a crisis. For moments that can be reasonably associated with a period shortly after

a crisis (right skewness, low variance), incentive of the rating agency move in the

opposite direction: the rating agency has an increasing incentive to be too strict.

This gives the rating agency an incentive to rate procyclically: excessively lenient
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ratings expand investments during booms, excessively restrictive ratings restrict

investments during recessions. Observe that the mean of aggregate uncertainty has

a counter cyclical effect; a small expected average, which can be associated with a

period shortly after a crisis, gives the rating agency an incentive to be too lenient.

The opposite holds for a high expected average.

4.1 Example of Beta Distributions

It is illustrative to parametrize the posterior distribution of Ei as a Beta distribution

with support [E0, t], i.e. Ei having a density h(y) ∝ yα−1(1 − y)β−1, where y =

(Ei −E0)/(t−E0). The distribution of Ei/t is determined by the three parameters

α, β, and e0 := E0/t. (The upper bound of the support of Ei/t is 1.) These three

parameters pin down m1, m2, and m3+:

m1 =
α + βe0
α + β

,

m2 =
(1− e0)2αβ

(α + β)2(1 + α + β)
+m2

1

m3+ =
α + β − 1

(1− e0)(β − 1)
− 1−m1 −m2

It can be shown that this is a one-to-one mapping from (α, β, e0) to (m1,m2,m3+).13

One can use this one-to-one mapping for comparative statics with respect to say m3+

13The mapping in the opposite direction can be derived in closed form, but the resulting ex-
pressions are rather long and uninformative and therefore omitted. m1 and m2 are the well-
known first two moments of the Beta distribution. m3+ can be derived by observing that
E[(1 − y)−1(1 − e0)−1] = E[

∑∞
k=0(e0 + (1 − e0)y)k] = E[

∑∞
k=0 e

k] = 1 + m1 + m2 + m3+, where
e = Ei/t = e0 + (1 − e0)y. For a Beta distribution with density h(y) = yα−1(1 − y)β−1/B(α, β)
the expected value is

E

[
1

1− y

]
=

∫ 1

0

yα−1(1− y)β−2

B(α, β)
dy =

B(α, β − 1)

B(α, β)
=
α+ β − 1

β − 1
,

where the last equality follows from the relation of the Beta to the Gamma function

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
,

and the property Γ(x+ 1) = xΓ(x) of the Gamma function which imply

B(α, β) =
Γ(α)Γ(β − 1)(β − 1)

Γ(α+ β − 1)(α+ β − 1)
=

β − 1

α+ β − 1
B(α, β − 1).

Putting this together yields the expression for m3+.
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while keeping m1 and m2 constant. Figure 2 shows a Beta distribution with α = 3,

β = 5 and e0 = 0.1 (dashed line). For this distribution, L′(0) = 0, i.e. the rating

agencies sets the cutoff at exactly the socially optimal level x = 0. For the dotted

line, m1 and m2 are kept constant and m3+ is reduced by 0.01. The dotted line

has a fatter lower tail which means that it has a higher mass at the bottom of the

distribution. The mean and variance remain the same, but if a crisis hits, it is more

likely to be severe. For the dotted distribution L′(0) < 0 and hence the cutoff is

negative, x < 0, which means that the rating criteria are too loose compared to the

socially optimal ones. For the solid line, m3+ is increased by 0.01 while keeping m1

and m2 constant. For this distribution L′(0) > 0 and hence x > 0, that is, the rating

is too strict compared to the socially optimal one.

Figures 3, 4, and 5 illustrate the change of L′(0) as m3+, m1, and m2 are changed,

respectively, while keeping the other parameters constant. The optimal cutoff for

example can switch from a negative to a positive cutoff if the mean or the higher

order skewness increase or if the variance decreases. For all values of m1, m2, and

m3+, the parameters α, β, and e0 are in permissible ranges.14

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Figure 2: Density of Ei/t for α = 3, β = 5, e0 = 0.1 (dashed line). For the dotted
line, m3+ is reduced by 0.01, for the solid line, m3+ is increased by 0.01, while m1 and
m2 are kept constant. (The corresponding parameters are α = 4.4322, β = 5.8781,
e0 = 0.013363 for the dotted and α = 2.23, β = 4.38985, e0 = 0.151755 for the solid
distribution.)

14The permissible ranges are α > 0, β > 0, and e0 ∈ (0, 1).
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Figure 3: Values of L′(0) as m3+ is changed and m1 and m2 are kept constant.
Starting point is α = 3, β = 5, e0 = 0.1 (which corresponds to m1 = 0.4375,
m2 = 0.2125, and m3+ = 0.294444) for which L′(0) = 0. Further parameters are
normalized to t = 1 and f(0) = 1.
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m 1

- 0.0010
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0.0005

0.0010

L ' H 0 L

Figure 4: Values of L′(0) as m1 is changed and m2 and m3+ are kept constant.
Starting point is α = 3, β = 5, e0 = 0.1 (which corresponds to m1 = 0.4375,
m2 = 0.2125, and m3+ = 0.294444) for which L′(0) = 0. Further parameters are
normalized to t = 1 and f(0) = 1.
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Figure 5: Values of L′(0) as m2 is changed and m1 and m3+ are kept constant.
Starting point is α = 3, β = 5, e0 = 0.1 (which corresponds to m1 = 0.4375,
m2 = 0.2125, and m3+ = 0.294444) for which L′(0) = 0. Further parameters are
normalized to t = 1 and f(0) = 1.
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5 Empirical Implications

Our model shows how the rating agency’s incentive to be too lenient or too strict

depends on the moments of aggregate uncertainty. Since these moments cannot be

observed directly, one may wonder about the empirical content of our model.

First, it should be noted that an empirical estimate of the distribution of aggre-

gate uncertainty is non-trivial, especially if the main concern is about the distribu-

tion of aggregate uncertainty shortly before a crisis. The reason is that only few

crises occur, so it is difficult to have larger amounts of data.

However, an empirical estimate of market participants’ beliefs about the distri-

bution of aggregate uncertainty can be obtained. We illustrate the basic idea of how

to estimate these moments in a strongly stylized setup containing the core idea of

the empirical strategy.

Consider the following stylized setup. There is an index for the bonds being sold

by the firms in the market. As an example, one can think of a subprime mortgages-

backed securities index. Further, there is a market for financial derivatives based

on this index. Call options on the index can be bought in the first period of the

model, before aggregate uncertainty is realized.15 The options expire in the second

period after aggregate uncertainty has realized. Time is discrete and the options

are European options.16 Further, aggregate uncertainty is such that the mid-quality

firms’ beliefs are the same as the general market beliefs, formally, ε̂i = εi for all i.17

Suppose that the cut-off of the agency is close to 0 (x ≈ 0), so that the value of the

index Ei(x) is well approximated by Ei(0).

Further, assume that there exists a call option with strike price yi = Ei for

each state of the world i. Without loss of generality, order the states of the world

increasingly, i.e. Ej > Ei if j > i. The second-period value of a call option with

15For the sake of simplicity, we focus on call options on an index. One could also think of put
options on an index or e.g. mortgage credit default swap ABX indices.

16In a discrete two-period model, it does not matter whether the option is European or American.
In a continuous time model, calculations for American options are somewhat more complex, but
standard and well known in the literature.

17A sufficient condition is that λi = λ̃ for all i, that is, aggregate uncertainty enters through
changes of κi and µi for different states of the world i.
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strike price yj in state i is Ei−yj if Ei > yj and 0 if Ei ≤ yj. Denote the first-period

price of option j with strike price yj as Oj. Oj is given by the market’s expected

value of the second period value (ignoring discounting):

Oj =
N∑
i=1

εi max{Ei − yj, 0} =
N∑

i=j+1

εi(Ei − Ej) (7)

where the second equality follows from yj = Ej. (For i = N , Oj = 0.)

The next proposition shows that given a set of call options, the information

on their strike prices yj and first-period prices Oj identifies the market’s beliefs

about the distribution of aggregate uncertainty; it identifies the probability εi for

the expected quality Ei. The proof is provided in the Appendix.

Proposition 7. Given strike prices and first period prices {(yj, Oj)}Nj=1, the proba-

bility mass function of the distribution of aggregate uncertainty is given by

εj =
Oj −Oj+1

yj+1 − yj
− Oj−1 −Oj

yj − yj−1

for 1 < j < N and

εN =
ON−1

yN − yN−1
,

ε1 = 1−
N∑
i=2

εi.

A similar result can be obtained for a continuous distribution of Ei. For the

continuous distribution version, drop the index in Ei and denote the distribution of

E as G. Assume that prices O(y) for call options with a continuum of strike prices

y ∈ [t, t] are observed. Then O(y) is given by

O(y) =

∫ t

t

max{E − y, 0}dG(E) =

∫ t

y

(E − y)dG(E).

The first derivative is

O′(y) =

∫ t

y

(−1)dG(c)− [(y − y)g(y)] = −(1−G(y)),
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and the second

O′′(y) = g(y).

This is analogous to the discrete distribution result and the distribution G is non-

parametrically identifiable given data on call option prices.

In practice, one expects to observe less options than there are states of the world,

so parametric assumptions are required to be able to estimate the distribution of E.

In the following, we make the parametric assumption that the distribution G is

a polynomial with lower bound of support E0 and upper bound t. As an example,

consider a cubic function

G(E) = a1 + 2a2E + 3a3E
2 + 4a4E

3.

The price of a call option will also be a polynomial function of the strike price y,

since

O(y) =

∫ t

y

(1−G(E))dE = a0 + a1y + a2y
2 + a3y

3 + a4y
4,

where

a0 = −
4∑
i=1

ait
i
.

Suppose we observe data for five call options with strike prices {yj}5j=1 and

option prices {O(yj)}5j=1. In this case, the parameters {ai}4i=0 are given by the

linear equation system

O(yj) = a0 + a1yj + a2y
2
j + a3y

3
j + a4y

4
j , j = 1, ..., 5. (8)

As long as the matrix
[
yij
]
j=1,...,5;i=0,...,4

is non-singular, the equation system (8)

yields a unique solution for the variables {ai}4i=0. Note that E0 and t are uniquely

pinned down by the parameters {ai}4i=0 and by the equations G(E0) = 0 and G(t) =

0.18

Given the distribution G of E, we can obtain the distribution of e = E/t and

18While the G(E) has multiple roots due to G being a polynomial, the solution of G(E0) = 0 is
unique nonetheless. This is because of the constraints G′(E) > 0 for E ∈ [E0, t] and yj ∈ [E0, t]
for all j. By the same reasoning, there is a unique solution of G(t) = 1.
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the moments m1, m2, m3+ of e. This in turn yields

S = 1− 1

1 +m1 +m2 +m3+

− m2

m1

from expression Proposition 3 and determines the sign of the marginal profit Π′(0)

at x = 0. Table 1 provides examples of hypothetical observed prices of call options

and corresponding estimated parameters, moments, and S. For the first set of

observations (first line), the rating agency has an incentive to choose the cutoff at

the first best level x = 0. For the second line and third line, the agency has an

incentive to choose a negative and a positive cutoff, respectively.

observed prices estimated parameters moments S
O1 O2 O3 O4 O5 a1 a2 a3 a4 m1 m2 m3+

11 8.0 5.7 3.9 2.6 -0.37 0.0096 -0.000030 3.4×10−8 0.35 0.15 0.30 0.0
5.9 4.1 2.7 1.8 1.1 0.0 0.0077 -0.000026 3.4×10−8 0.24 0.095 0.12 -0.073
14 10 7.2 4.9 3.2 -0.89 0.014 -0.000043 5.1×10−8 0.41 0.20 0.37 0.019

Table 1: Example of parameter estimates for data on call option prices Oj = O(yj)
for strike prices (y1, y2, y3, y4, y5) = (80, 90, 100, 110, 120).

We have illustrated the basic idea behind an empirical strategy to estimate the

moments of aggregate uncertainty. To practically apply this strategy, several addi-

tional steps are required, which are beyond the scope of this article. First, one needs

to construct synthetic call options for the index of the bonds being rated. Second,

the pricing of options in a multi-period environment is more complicated than the

simple two-period setup we used for illustrative purposes. These problems are far

from trivial, but well studied in Finance, see e.g. Hull (2009). Additionally, one

could use a different parametrization for G instead of the polynomial parametriza-

tion or, if sufficiently many observations are available, one could possibly even use

a non-parametric estimate of the function O(y) given the observations {yj, O(yj)}j.

Further, one would also want to estimate the confidence interval for S.
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6 Risk-aversion

In the main part of this paper we have assumed that investors are risk neutral and

we have shown that it is optimal for the agency to pool all types above a cutoff

in one rating class. Doherty, Kartasheva, and Phillips (2012) extend the model of

Lizzeri (1999) by allowing investors to be risk-averse and they show that, if the level

of risk aversion is sufficiently high, the rating agency rates types above a cutoff in

several rating classes.

First, following the paper of Doherty et al. (2012) we provide a simplified hybrid

model incorporating risk aversion and aggregate uncertainty. We show that intro-

ducing risk aversion in a model with several states of the world can also yield several

rating classes. In this case our previous analysis can be interpreted as determining

the optimal cutoff of the lowest investment grade rating class (e.g. BBB). Second,

we provide a numerical example to show that the effects of the moments of the ex-

pected quality distribution on the optimal cutoff have the same sign as before even

with risk aversion and several rating classes.

We provide the simplest possible setup which is rich enough to illustrate the idea.

Assume that buyers are risk-averse. Their utility of an asset is equal to t but their

expected utility depends on both the mean and the variance of the quality of the

asset they buy. We include a second mass point at t2, t2 ≥ t, with mass γi in state

i. To avoid confusion denote t by t1. See Fig. 6.

If buyers are risk-averse, a welfare maximizing rating strategy needs to perfectly

disclose the type of all assets with a positive value because any kind of pooling

and being vague about a firm’s quality leads to a welfare loss. However, such a

strategy cannot be optimal for the rating agency.19 To analyze a general model with

risk-aversion is beyond the scope of this article. In the following, we compare two

rating strategies: (i) pooling all types above a cutoff in one rating class, which is

the optimal strategy without risk-aversion, and (ii) a strategy in which the agency

only pools low types and rates high types separately. Doherty et al. (2012) show

19To ensure that all firms with t ≥ 0 are willing to pay the rating fee under full disclosure, the
rating fee has to be 0.
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Figure 6: κi, µi and γi are the mass points at t, t1 and t2 in state i. λi is the mass
in state i that is allotted to the types t ∈ (t, t) with the distribution F .

that strategy (ii) is optimal in a model with one state of the world if the level of

risk-aversion is sufficiently high.

Analogously to the case without risk-aversion, we derive the profit of the agency

if it pools all types above a cutoff x in one class. The expected type above a cutoff

x is

Qi(x) := E[t|t ≥ x]

and the variance is

σi(x) := Var[t|t ≥ x].

The buyer’s valuation for the asset of a seller in this rating class is

Qi(x)− aσi(x)

where a is a measure for risk-aversion. If a = 0, the buyers are risk-neutral and the

model is equivalent to the one before.

The profit of the agency if it pools all types is

Π̂(x) :=

(∑
i

(λi(1− F (x)) + µi + γi)εi

)(∑
i

ε̂i(Qi(x)− aσi(x))

)
=(1− F (x) + µ̃+ γ̃)

∑
i

ε̂i(Qi(x)− aσi(x))
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where γ̃ is the expected value of γ, γ̃ =
∑

i εiγi.

Alternatively, the rating agency can pool t ∈ [x, t1] and rate t2 separately as

shown in Fig. 6. If the agency rates types t2 in a separate class, these sellers are

willing to pay a high rating fee (up to t2) and therefore the rating fee is determined

by sellers in the class t ∈ [x, t1]. Keeping the cutoff x constant, the mass of rated

firms is the same for both strategies and the rating fee decides which rating strategy

yields higher profits. If the agency pools types t ∈ [x, t1], the expected type in this

rating class is smaller than Qi(x) but the variance is also smaller than σi(x). Thus,

it is not straight forward to see under which strategy the rating fee can be higher.

Now, we derive sufficient conditions such that the agency prefers to rate t2 sep-

arately instead of pooling all types above x in one rating class. Define zi := γit2

and z̃ as the expected value of zi, z̃ :=
∑

i εizi. Rewrite z̃ as z̃ = t2γ̃, which can be

interpreted as the agency’s profit if it charges a rating fee of t2 and rates only firms

with type t2. Remember that Π(x) is defined as the profit if the agency rates only

t ∈ [x, t1] and pools them all in one class. The sufficient condition is given in the

following proposition, the proof being provided in the Appendix.

Proposition 8. Take an arbitrary cutoff x. For any z̃ with z̃ ≤ Π(x) there exists

a T 2 such that for all t2 ≥ T 2 the rating agency is better off pooling t ∈ [x, t1] and

rating t2 in a separate class than pooling all types above x in one rating class.

Since investors are risk-averse, their expected utility buying an asset in a given

rating class decreases if the variance inside this rating class becomes larger. If the

variance is sufficiently large, investors are not willing to pay any positive price for

an asset even if the expected quality is positive. Thus, if the variance is large, the

agency is better off splitting the types in several rating classes in order to reduce the

variance inside one class and to increase investors’ willingness to pay for an asset.

The condition that z̃ ≤ Π(x) ensures that the agency does not prefer to charge a

rating fee of t2 and to exclude firms with t < t2 from the rating.

Risk aversion does not only have the effect of multiple rating classes becoming

optimal, but it also has an additional effect on the optimal cutoff. Increasing the
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cutoff reduces the variance in a rating class and this can give additional incentives

to increase the cutoff.20 In the following we provide numerical examples in which

we show that the effects of the first, second, and higher moments are similar to our

analysis without risk aversion.21 In the numerical example we have four states of

the world. We take the Generalized Pareto distribution F (t) = 1− ((1− t)/2)3 for

t ∈ (−1, 1) and fix t1 = 1. This gives us E0 = 1/4. We fix λ = 5, t2 = 110, and

νi = 0.0001 for all i. The states only differ in the weights µi at the mass point

at t1, with µ1 = 0.03, µ2 = 0.2, µ3 = 0.4, and µ4 = 0.7. Changing the moments

of the aggregate distribution, we keep the distribution inside a state constant (and

therefore also the expected type) and only vary the probabilities for the different

states. There is a one-to-one mapping from (ε1, ε2, ε3) to (m1,m2,m3+) and the

fourth probability is pinned down by ε4 = 1 − ε1 − ε2 − ε3. For all values of the

example, the probabilities are in [0, 1].

Figures 7, 8, and 9 illustrate the change of the optimal cutoff as m3+, m1 and

m2 are changed while keeping the other moments constant. The solid line is the

optimal cutoff for a = 0, the dashed line for a = 0.01 and the dotted-dashed line

for a = 0.02. If investors are risk neutral, a = 0, the agency pools all types above

the cutoff in one class. For a = 0.01 and a = 0.02, investors are risk averse and the

agency prefers to pool all types t ∈ [x, t1] in one class and to rate t2 separately. Note

that increasing the level of risk aversion leads to an increase in the optimal cutoff x∗.

The figures show that our results from the main part of the paper carry over to a

setup including risk-aversion: Keeping the other moments constant, a higher mean,

a lower variance, or an increase in the higher order skewness lead to an increase in

the optimal cutoff. For changes with the opposite sign, the optimal cutoff decreases.

Hence, results from the risk-neutral setup carry over qualitatively to a setup with

20Doherty et al. (2012) show that the optimal cutoff can be positive even with only one state of
the world if the level of risk aversion is sufficiently high.

21In the main part of the paper the moments were defined for the distribution of the expected
type in [0, t] (scaled by t). For the sake of comparison, in the numerical examples the moments
are defined for the distribution of the expected type in [x, t1] and thus, the expected type is not
influenced by changes in the mass on t2. We deviate from our previous analysis by taking the
threshold x as the lower bound of the interval. In this way we can determine the optimal cutoff
explicitly and not only its sign.
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risk aversion. A setup with risk aversion comes at the cost of being analytically

intractable, but has the desirable feature that it makes the more realistic prediction

of multiple rating classes.

0.315 0.320 0.325 0.330
m 3 +

- 0.010

- 0.005

0.005

0.010
x *

Figure 7: Values of the optimal threshold x∗ as m3+ is changed and m1 and m2 are
kept constant. For the solid line a = 0, for the dashed line a = 0.01 and for the
dotted-dashed line a = 0.02. The rating strategy for the solid line is to pool all
types above x. For the dashed and dotted-dashed line all types in [x, t1] are pooled
and t2 is rated separately. (The starting values are εi = 1/4 for all i. This implies
m1 = 0.47627, m2 = 0.244859 and as a starting value m3+ = 0.321538.)

7 Conclusions

We have considered the profit maximizing rating strategy of a rating agency in the

face of aggregate uncertainty. We have shown that with risk neutral investors it is

still optimal for the rating agency, as in a setup without aggregate uncertainty, to

choose only one rating class for rated firms and to not rate the remaining firms.

The model’s predictions about the cutoff for the rating class strikingly differ

from the predictions of a model without aggregate uncertainty: the rating agency

has more of an incentive to be too lenient if the expected average quality is small,

the variance large, and the higher order skewness small. For larger averages, smaller

variances, and larger higher order skewness the opposite holds: the rating agency

has more of an incentive to be too strict. These results can be interpreted as ratings

having either a procyclical or an countercyclical effect. We outline an empirical

strategy to estimate the moments of aggregate uncertainty which can be used to
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Figure 8: Values of the optimal threshold x∗ as m1 is changed and m2 and m3+ are
kept constant. For the solid line a = 0, for the dashed line a = 0.01 and for the
dotted-dashed line a = 0.02. The rating strategy for the solid line is to pool all
types above x. For the dashed and dotted-dashed line all types in [x, t1] are pooled
and t2 is rated separately. (The starting values are εi = 1/4 for all i. This implies
m2 = 0.244859, m3+ = 0.321538 and as a starting value m1 = 0.47627 .)

0.2435 0.2440 0.2445 0.2450 0.2455 0.2460 0.2465
m 2

- 0.010

- 0.005

0.005

0.010
x *

Figure 9: Values of the optimal threshold x∗ as m2 is changed and m1 and m3+ are
kept constant. For the solid line a = 0, for the dashed line a = 0.01 and for the
dotted-dashed line a = 0.02. The rating strategy for the solid line is to pool all
types above x. For the dashed and dotted-dashed line all types in [x, t1] are pooled
and t2 is rated separately. (The starting values are εi = 1/4 for all i. This implies
m1 = 0.47627, m3+ = 0.321538 and as a starting value m2 = 0.244859.)
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determine which effect dominates.

Our analysis identifies one up to now unconsidered factor that affects the rating

strategy of an agency – aggregate uncertainty – and thereby sheds further light in

understanding the behavior of rating agencies. In line with our model, one dis-

turbing effect of using ratings as the basis for financial regulation is that a possible

procyclicality of ratings leads to a procyclicality of capital adequacy requirements

for banks, and hence to a procyclicality of lending. One solution is to avoid using

ratings as the basis for financial regulation. Another is to counterbalance the pro-

cyclicality of ratings by adding countercyclicality to capital adequacy requirements

that are based on ratings.

The usual disclaimer for the policy implications holds. This article is about a

thorough analysis of the effects of aggregate uncertainty, shutting down other effects

such as like reputation cycles, imperfect rating technology, and competition between

agencies. Further, the implications of the theory depend on the empirical moments

of the distribution of aggregate uncertainty. Hence, an empirical analysis is needed

to estimate these moments and the relative magnitude of the different effects. Our

article provides a starting point for such an empirical analysis. This paper also

serves as a word of caution: using a distribution which is pinned down by its mean

and variance (e.g. the often used normal distribution) for an empirical analysis will

neglect the impact of the higher order skewness. However, the skewness is crucial

for the incentive of the rating agency to distort ratings.
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Appendix

Proof of Lemma 1

Proof. (i) Denote the class containing t as Tn. Define an alternative rating class

T ∗n = {t} ∪
[
0, t
]
. Observe κit + λi

∫ t
0
tdF (t) + µit is the expected quality in T ∗n

in state i, E
[
T ∗n,i
]
, and by Assumption 2 this is smaller than zero. The expected

quality in class Tn in state i, E[Tn,i], can be larger or smaller than E
[
T ∗n,i
]
. If E[Tn,i]

is smaller than E
[
T ∗n,i
]
, it follows directly that E[Tn,i] < 0.
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If E [Tn,i] is larger than E
[
T ∗n,i
]
, Tn must include types t ∈ [E

[
T ∗n,i
]
, 0] to raise

the expected quality. Including negative qualities in Tn can increase the expected

type in comparison to T ∗n but the expected type E[Tn,i] stays negative. Therefore,

the willingness to pay for a rating in category Tn is negative and the rating agency

prefers not to have category Tn.

(ii) Take a rating strategy {T̃m}M̃m=1. Assume that t is not in any T̃m. Define for

all rating classes T̃m the expected value

E∗m =

∫
t∈T̃m tdF (t)∫
t∈T̃m dF (t)

(9)

which is constant over all states of the world. The price is determined by the lowest

willingness to pay, minmE
∗
m, and the expected mass of rated firms

∑
i εi
∑

m

∫
t∈T̃m λidF (t).

Using
∑

i εiλi = 1, we get for profits

Π̃ =
[
min
m

E∗m

]
M̃∑
m=1

∫
t∈T̃m

dF (t)

 (10)

Now take a rating strategy with M = M̃+1, Tm = T̃m for m ≤ M̃ and TM = {t}.

Including the t types adds expected mass µ̃ to the mass of rated firms. Hence,

expected profits are

Π =
[
min

({
t
}
∪ {E∗m}

M̃
m=1

)]µ̃+
M̃∑
m=1

∫
t∈Tm

dF (t)

 (11)

Since in (11) the expression in square brackets is weakly greater than in (10)

and the expression in curly braces is strictly greater in (11) than in (10), we have

Π > Π̃.

Proof of Lemma 2

Proof. It holds that ∑
i

(
εiµi
µ̃
− εiλi

λ̃

)
= 0
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because of
∑

i εiµi/µ̃ =
∑

i εiλi/λ̃ = 1 Define two sets of states of the world; i ∈ A

if µiεi
λi

> µ̃ and i ∈ B if µiεi
λi
≤ µ̃. Thus

∑
i∈A

(
εiµi
µ̃
− εiλi

λ̃

)
+
∑
i∈B

(
εiµi
µ̃
− εiλi

λ̃

)
= 0

and multiply by a constant c

∑
i∈A

(
εiµi
µ̃
− εiλi

λ̃

)
c+

∑
i∈B

(
εiµi
µ̃
− εiλi

λ̃

)
c = 0. (12)

The expected quality in state i is

Ei =
λi
∫
t∈T tdF + µit

λi
∫
t∈T dF + µi

=

∫
t∈T tdF + µi/λit∫
t∈T dF + µi/λi

and is increasing in µi/λi. Define c as
∫
t∈T tdF+µ̃t∫
t∈T dF+µ̃

. The expected quality Ei for i ∈ A

is larger than c and Ei < c for i ∈ B. It follows that

∑
i∈A

(
εiµi
µ̃
− εiλi

λ̃

)
c <

∑
i∈A

(
εiµi
µ̃
− εiλi

λ̃

)
Ei (13)

and ∑
i∈B

(
εiµi
µ̃
− εiλi

λ̃

)
c <

∑
i∈B

(
εiµi
µ̃
− εiλi

λ̃

)
Ei. (14)

Using inequalities (13) and (14) gives us

∑
i∈A

(
εiµi
µ̃
− εiλi

λ̃

)
Ei +

∑
i∈B

(
εiµi
µ̃
− εiλi

λ̃

)
Ei

>
∑
i∈A

(
εiµi
µ̃
− εiλi

λ̃

)
c+

∑
i∈B

(
εiµi
µ̃
− εiλi

λ̃

)
c

which is equal 0 by equation (12). Therefore, it holds that

∑
i

(
εiµi
µ̃
Ei

)
−
∑
i

(
εiλi

λ̃
Ei

)
> 0.

Since
∑

i

(
εiµi
µ̃
Ei

)
is the willingness to pay for a rating for type t and

∑
i

(
εiλi
λ̃
Ei

)
for type t ∈ (t, t), the lemma follows.
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Proof of Lemma 3

Proof. Label the rating class that includes t as T̃1 and the remaining rating classes

as T̃−1 = ∪m6=1T̃m. Denote the expected type of T̃1 conditional on being in state i

as Ẽi = [
∫
t∈T̃1 tdF (t) + µit]/[

∫
t∈T̃1 dF (t) + µi]. Denote the mass of all other classes

as µ∗ =
∫
t∈T̃−1

dF (t) and the expected type as t∗ = [
∫
t∈T̃−1

tdF (t)]/[
∫
t∈T̃−1

dF (t)].

Profits for only one rating class T1 = ∪mT̃m are

Π =

[∑
i

ε̂iEi

]
(µ∗ + µ̃)

where

Ei =
λi(
∫
t∈T̃−1

tdF (t)) +
∫
t∈T̃1 tdF (t) + µit

λi(
∫
t∈T̃−1

dF (t) +
∫
t∈T̃1 dF (t)) + µi

is the expected type in state i if there is only one rating class. Profits for separate

rating classes {T̃m} are

Π̃ =

[
min

(
{E∗m}M̃m=1 ∪

{∑
i

ε̂iẼi

})]
(µ∗ + µ̃),

where E∗m is defined as in (9). Further, define the profit in case all rating classes

m 6= 1 were merged, such that one had two rating classes T̃1 and ∪M̃m=2T̃m, as

Π̂ =

[
min

{
t∗,
∑
i

ε̂iẼi

}]
(µ∗ + µ̃).

Since t∗ is a weighted average of {Ẽm}M̃m=1, we have t∗ ≥ min{Ẽm}M̃m=1 and therefore

Π̂ ≥ Π̃. (Note that Π, Π̂, and Π̃ only differ in the expressions in square brackets.)

We will prove the lemma by contradiction. Assume to the contrary that separate

classes are desirable, i.e. Π̃ > Π. This implies Π̂ > Π, which is equivalent to

min

{
t∗,
∑
i

ε̂iẼi

}
>
∑
i

ε̂iEi,

by comparison of the expressions in square brackets. This condition is equivalent to
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both

t∗ >
∑
i

ε̂iEi (15)

and ∑
i

ε̂iẼi >
∑
i

ε̂iEi (16)

being satisfied at the same time.

The expected value Ei can be written as weighted average of t∗ and Ẽi for every

state i

Ei =
λi(
∫
t∈T̃−1

tdF (t) +
∫
t∈T̃1 tdF (t)) + µit

λi(
∫
t∈T̃−1

dF (t) +
∫
t∈T̃1 dF (t)) + µi

=
λit
∗ ∫

t∈T̃−1
dF (t) + Ẽi(

∫
t∈T̃1 λidF (t) + µi)

λi(
∫
t∈T̃−1

dF (t) +
∫
t∈T̃1 dF (t)) + µi

.

Solving for Ẽi, we get

Ẽi = Ei +
λi
∫
t∈T̃−1

dF (t)

λi
∫
t∈T̃1 dF (t) + µi

(Ei − t∗)

Plugging Ẽi into (16), we get

∑
i

ε̂i

(
Ei +

λi
∫
t∈T̃−1

dF (t)

λi
∫
t∈T̃1 dF (t) + µi

(Ei − t∗)

)
>
∑
i

ε̂iEi

or equivalently ∑
i

ε̂i

( ∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + µi/λi

(Ei − t∗)

)
> 0. (17)

Define two sets of states of the world; i ∈ A if Ei ≥ t∗ and i ∈ B if Ei < t∗. It holds

that µi/λi > µj/λj for all i ∈ A and j ∈ B. This can be seen by checking that

Ei =
(
∫
t∈T̃−1

tdF (t) +
∫
t∈T̃1 tdF (t)) + µi/λit

(
∫
t∈T̃−1

dF (t) +
∫
t∈T̃1 dF (t)) + µi/λi

is increasing in µi/λi. Denote cA = min {µi/λi|i ∈ A} and cB = max {µi/λi|i ∈ B}.

Note that cA > cB.
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Then (15) can be rewritten as

∑
i

ε̂i(Ei − t∗) < 0

which is equivalent to

∑
i∈A

ε̂i(Ei − t∗) +
∑
i∈B

ε̂i(Ei − t∗) < 0.

This implies[ ∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + cA

∑
i∈A

ε̂i(Ei − t∗)

]
+

[ ∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + cB

∑
i∈B

ε̂i(Ei − t∗)

]
< 0 (18)

since ∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + cA

<

∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + cB

and the sum over i ∈ A is positive and the sum over i ∈ B is negative. Since

µi/λi ≥ cA for all i ∈ A and
∑

i∈A ε̂i(Ei − t∗) positive, the first expression in square

brackets in (18) is bounded form below by∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + cA

∑
i∈A

ε̂i(Ei − t∗) ≥
∑
i∈A

ε̂i

( ∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + µi/λi

(Ei − t∗)

)
. (19)

The second expression in square brackets is bounded from below by

∑
i∈B

ε̂i(Ei − t∗)
∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + cB

≥
∑
i∈B

ε̂i

∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + µi/λi

(Ei − t∗). (20)

because of µi/λi ≤ cB for all i ∈ B and the negativity of
∑

i∈B ε̂i(Ei − t∗).

(18),(19) and (20) imply

∑
i∈A

ε̂i

( ∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + µi/λi

(Ei − t∗)

)
+
∑
i∈B

ε̂i

∫
t∈T̃−1

dF (t)∫
t∈T̃1 dF (t) + µi/λi

(Ei − t∗) < 0

which contradicts (17).
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Proof of Lemma 4

Proof. Assume that T̂ is not convex. Take a convex set T ′ such that it has the

same expected mass of rated firms (
∫
t∈T̂ dF (t) =

∫
t∈T ′ dF (t)) and both sets include

t. Remember that the profit is

Π(T ) =

[∑
i

ε̂i
λi
∫
t∈T tdF (t) + µit

λi
∫
t∈T dF (t) + µi

](∫
t∈T

dF (t) + µ̃

)
.

Since
∫
t∈T̂ dF (t) =

∫
t∈T ′ dF (t), comparing the profits Π(T̂ ) and Π(T ′) boils down to

comparing the willingness to pay for T̂ and T ′, which is given in square brackets.

Since T̂ is not convex, there is at least one unrated hole in the middle and it is

possible to rate the mass in the holes instead of rating some types below with the

same mass. This increases
∫
t∈T tdF (t), while the mass of rated types stays constant.

It follows that
λi

∫
t∈T tdF (t)+µit

λi
∫
t∈T dF (t)+µi

is greater for T ′ than for T̂ and hence Π(T ′) > Π(T̂ ).

Therefore, it is optimal to rate a set T which is convex and includes t.

Proof of Lemma 5

Proof. Analogously to the proof of Lemma 2 define two sets of states of the world;

i ∈ A if µi
λi
> µ̃

λ̃
and i ∈ B if µi

λi
≤ µ̃

λ̃
. It holds that

∑
i εi (µi − λiµ̃) = 0 which

we can write as
∑

A εi (µi − λiµ̃) +
∑

B εi (µi − λiµ̃) = 0. Multiplied by a constant

c = 1
(1−F )+µ̃

the expression is still equal to 0. For i ∈ A, 1
(1−F )+µi/λi

is smaller than

1
(1−F )+µ̃

and for i ∈ B it is the other way round. It follows that

∑
A

εi (µi − λiµ̃)
1

(1− F ) + µi/λi
+
∑
B

εi (µi − λiµ̃)
1

(1− F ) + µi/λi
< 0

because µi − λiµ̃ is positive for i ∈ A and negative for i ∈ B. This is equivalent to

(t−E0)(1−F )

λ̃(1−F )+µ̃

∑
i ε̂i

λ̃µi−µ̃λi
λi(1−F )+µi

< 0 and thus,
∑

i ε̂i
λi(1−F )E0+µit
λi(1−F )+µi

< λ̃(1−F )E0+µ̃t

λ̃(1−F )+µ̃
.
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Proof of Proposition 2

Proof.

L′(x) =Π′(x)−W ′(x)

=f(x)

(
(Ê − 1− F (x) + µ̃

f
Ê ′)− (Ẽ − 1− F (x) + µ̃

f
Ẽ ′)

)
=f(x)

(
Ê − Ẽ +

1− F (x) + µ̃

f
(Ẽ ′ − Ê ′)

)
. (21)

We know that Ê ≥ Ẽ but the sign of Ẽ ′ − Ê ′ can go in both directions.

Next, we rewrite (21) such that we can express L′(x) only in terms of Ei, Ẽ, and

Ê. The derivative of Ẽ with respect to x is

∑
i

ε̂i
∂Ei
∂x

=
∑
i

ε̂i
Ei − x

λi(1− F (x)) + µi
f(x)λi.

and analogously it can be shown that

∂Ê

∂x
=

Ê − x
1− F (x) + µ̃

f(x).

Using these two expressions in (21), we can write

L′(x) =f(x)

(
Ê − Ẽ +

1− F (x) + µ̃

f

(∑
i

ε̂i
Ei − x

λi(1− F (x)) + µi
λif −

Ê − x
1− F (x) + µ̃

f

))

=f(x)

(
Ê − Ẽ + (1− F (x) + µ̃)

∑
i

ε̂i
Ei − x

λi(1− F (x)) + µi
λi − (Ê − x)

)
.

From the definitions of Ei and Ê we derive µi = λi(1 − F (x))Ei−E0

t−Ei
and µ̃ = (1 −

F (x)) Ê−E0

t−Ê which leads to

L′(x) =f(x)

(
x− Ẽ + (1− F (x) + (1− F (x))

Ê − E0

t− Ê
)
∑
i

ε̂i
Ei − x

λi(1− F (x)) + λi(1− F (x))Ei−E0

t−Ei

)

=f(x)

(
x− Ẽ + (1 +

Ê − E0

t− Ê
)
∑
i

ε̂i
(Ei − x)(t− Ei)

t− E0

)

=f(x)

(
x− Ẽ +

∑
i

ε̂i
(Ei − x)(t− Ei)

t− Ê

)
.
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Remember that W ′(0) = 0 which implies that L′(0) = Π′(0). Thus, the sign of L′(0)

determines the sign of the profit maximizing cutoff. To determine the sign of L′(0)

we set x = 0 in the above expression and

L′(0) =f(0)

(
−Ẽ +

∑
i ε̂iEi(t− Ei)
t− Ê

)
=f(0)

(
−Ẽ +

tẼ −
∑

i ε̂iE
2
i − ẼÊ + ẼÊ

t− Ê

)

=f(0)

(
−Ẽ +

ẼÊ −
∑

i ε̂iE
2
i

t− Ê
+

(t− Ê)Ẽ

t− Ê

)

=f(0)

 −Ẽ︸︷︷︸
marginal effect

+
Ẽ

t− Ê

(
Ê −

∑
i ε̂iE

2
i

Ẽ

)
+ Ẽ︸ ︷︷ ︸

inframarginal effect

 .

This expression gives us another way to write the inframarginal effect of a change

of the threshold at x = 0 on the profit Π. We can simplify L′(0) to

L′(0) =
f(0)Ẽ

t− Ê

(
Ê −

∑
i ε̂iE

2
i

Ẽ

)
=
f(0)Ẽ

t− Ê

(
Ê − Ẽ − (

∑
i ε̂iEi)

2 −
∑

i ε̂iE
2
i

Ẽ

)
.

Proof of Proposition 7

Proof. The expression for εN can be derived by observing that

ON−1 =
N∑
i=N

εi(Ei − yN−1) = εn(yN − yN−1).

The expression for εj for 1 < j < N can be obtained by first observing that

Oj−1 −Oj =
N∑
i=j

εi(Ei − Ej−1)−
N∑

i=j+1

εi(Ei − Ej) =
N∑
i=j

εi(Ej − Ej−1),

42



where the first equality follows from (7) and the second equality can be obtained by

rearranging the sums. Dividing by Ej − Ej−1 yields

Oj−1 −Oj

Ej − Ej−1
=

N∑
i=j

εi,

and taking differences

Oj −Oj+1

yj+1 − yj
− Oj−1 −Oj

yj − yj−1
=

N∑
i=j+1

εi −
N∑
i=j

εi = εj,

that is, the expression for εj for 1 < j < N in the proposition. The expression for

ε1 simply follows from that fact that probabilities add up to one.

Proof of Proposition 8

Proof. We want to analyze the effect of a change of t2, while keeping zi = γit2

constant. For this purpose the variance σi(x) can be rewritten as

σi(x) =
λi
∫ t1
x
t2dF (t) + µit

2
1 + γit

2
2

λi(1− F (x)) + µi + γi
−

(
λi
∫ t1
x
tdF (t) + µit1 + γit2

λi(1− F (x)) + µi + γi

)2

=
(λi(1− F (x)) + µi + γi)(λi

∫ t1
x
t2dF (t) + µit

2
1 + γit

2
2)− (λi

∫ t1
x
tdF (t) + µit1 + γit2)

2

(λi(1− F (x)) + µi + γi)2

=
(λi(1− F (x)) + µi + zi/t2)(λi

∫ t1
x
t2dF (t) + µit

2
1 + zit2)− (λi

∫ t1
x
tdF (t) + µit1 + zi)

2

(λi(1− F (x)) + µi + zi/t2)2

For t2 →∞ we get that the variance σi(x) goes to infinity

lim
t2→∞

σi(x) =∞

and the expected type Qi(x) converges to

lim
t2→∞

Qi(x) =
λi
∫ t1
x
tdF (t) + µit1 + zi

λi(1− F (x)) + µi
<∞.

It follows that for a > 0, the utility in state i, Qi(x)− aσi(x), becomes negative if t2

is large enough. This implies that buyers are not willing to pay a positive price for

a rated firm if the variance of types in one rating class is too high. Thus, for every
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cutoff x there is a t2 large enough such that the rating agency is better off pooling

t ∈ [x, t1] and rating t2 in a separate class than pooling all types above x.

A further condition that needs to be satisfied is that the agency does not prefer

to charge a rating fee of t2 and to rate only firms with type t2 which yields profits of

t2γ̃. Since we keep γit2 constant when we increase t2, the profit of only rating types

t2 stays constant. A sufficient condition for the agency to prefer to rate [x, t1] and

t2 is that the profit from pooling t ∈ [x, t1] and not rating t2 is larger than the profit

from only rating t2.
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